Channel Coding Theory

The First Class
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¢+ Shannon Capacity Theorem

“» Source Rate Separation Theory
s HW#0
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E-mail

% My e-mail is

heungno(@gist.ac.kr

%+ I will have the whole lecture notes available at the printing
shop.
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Course Information

%* Class hours: 10:30-12:00 am Monday, Wednesday
%+ Lecture room: B201
% Office hours:

— 2:00pm ~ 4:00pm Monday,

— 4:00apm ~ 5:00pm Tuesday.

— Or make an appointment via e-mail.
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Grade Distribution

¢ Two exams (Midterm#1: 20%, Final: 30%)

%* Homework + Homework Grading + Class Participation
(20%)
%+ Term Project (30%)
— Wireless network codes
— Compressive sensing
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Homework, Class-Project Policies

< Discussion and exchange of ideas are strongly encouraged.

% On each homework and class project set, a reviewer will
be assigned (will take turns).
«* The job of each reviewer is to
— grade homework/project sets,
— type up the best homework solution(rec. WORD with Mathtype),
get an approval of the solution manual from me, and

distribute the graded homework and solution to the students within
a week.

©200x Heung-No Lee 6




Tentative Schedule

Week # | Date Topics HWs Note

1 9/1(Wed) | Introduction to Channel Codes (Shannon’s 1948 | HW#0
paper)

2 9/6, 8 Galois Fields HW#1 Out

3 9/13,15 Polynomials over Galois Fields HW#2 Out

4 9/20, Linear Block Codes 9/21-25 Full Moon

Holidays

5 9/27,29 Linear Block Codes HW#3 Out

6 10/4,6 BCH and Reed-Solomon Codes HW#4 Out

7 10/11,13 BCH and Reed-Solomon Codes

8 10/18,20 | Midterm Week Midterm

9 10/25,27 | Convolutional Codes

10 11/1,3 Convolutional Codes/Trelllis Codes HW#5

11 11/8,10 Turbo Codes/Turbo Decoding HW#6 Asilomar Conference
Makeup on 11/12(Friday)

12 11/15,17 Performance Analysis of Turbo Codes

13 11/22,24 |LDPC codes/Decoding HW#7

14 11/29,12/1 |Density Evolution/EXIT Charts Hw#8

15 12/6,8 Distance Spectrum/Tight Union Bounds

Final 12/15 Final Exam on Wednesday

Week Term paper/project program package due by
Friday
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Scope of this course

*» Learn and apply the channel coding theory to practical
communications problems.

% Learn and simulate communications systems for the purpose of
evaluating their performances.

% Be able to analyze the obtained simulation result and to predict the
performance of a given system, and provide a better design.

% Once we know how to predict/evaluate the performance of a
communications system, we will use these knowledge and tool sets to
design a better performing communications system.

% I say this is the way how the communications theory has been evolved.
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Text Books

Required Textbook: Todd Moon, Error Correction Coding: Mathematical Methods
and Algorithms A comprehensive introduction modern and classical error correction
coding. Wiley, 2005. (ISBN 0-471-64800-0) (Fall 2006)

Reference: Stephen B. Wicker, “Error Control Systems for Digital Communication and
Storage,” Prentice Hall.

Reference: F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, North-Holland Mathematical Library, 1977.

Reference: D. Mackay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, 2003. (Downloadable at his Web-site)

Reference: T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge
University Press, 2007.

Reference: IEEE Transaction Papers to be Identified During the Course

©200x Heung-No Lee 9

% Now, let’s begin...
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Claude E. Shannon (1916 - 2001)

&

<+ Math/EE Bachelor from UMich (1936)
%» MSEE and Math Ph.D. from MIT (1940)

* A landmark paper “Mathematical Theory
of Communications” (1948)
— Founder of Information Theory

%

L

%

— Fundamental limits on communications

— Information quantified as a logarithmic
measure

&,
ﬂa@

For more info on him, make a visit to
http:// www.beli-
labs.com/news/2001/february/26/1.html
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Shannon’s Perspective on Communications

Messages Regenerate
oo © OO0 o
o oo Channel o Oo
(o)
o O o

+» Communications: Transfer of information from a source to a receiver

% Messages (information) can have meaning; but they are irrelevant for
the design of communications system.

% What’s important then?
— A message is selected from a set of all possible messages and iransmitted,
and regenerated at the receiver
— The size of the message set is the amount of information
% The capacity C of a channel is the maximum size of
message set that can be transferred over the channel and
can be regenerated almost error-free at the receiver.
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Digital Communication

% It is to send a message index m (out of M total) over the channel
— for the duration of time 7, and
— have an expectation that the same index m can be recovered almost error-
free at the receiver.

¢ Transmission rate R = log,(M)/T [bits/sec]

Py

> If R < C, then almost error-free recovery can be achieved.
% We need to find a set of A waveforms to interface the channel.

— An analog (physical) waveform shall be chosen to carry the messages.
Why?
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Main Story in Shannon’s Paper

% @Given a channel relation (Y = X + N), find out the size M of the input
message set which results in very small P(e).

— You are allowed to use the same channel many times, say » times.

% The strength of the noise limits the size of the input message set.
(Obvious)

% Determine the range of rates R = log,(M)/n that gives P(e) very small.
%+ There are 2"HX) typical input sequences of length n.

> We choose 2"R messages randomly out of total 2"HX) typical words.

% We want only one message out of total 2"R messages falls into the fan
of 2MHXIY).

©200x Heung-No Lee 14




Shannon’s Key Idea

&,

w There are 2"#") typical outputs. X Y

. 2nH(Y|X=x)

<» Each input message fans out to 2"/

‘ X=x
2nH (¥) -

« If we select only ST = 245D

number of messages, no

equivocation would occur.
— P(e) isclose to 0 (LLN)

EX3

&
=
=
o
=

(1))
=
L ]

can be constructe
difficult. ®

— What if it is constructed randomly?
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Shannon’s Key Idea:
P(e) in Random Codebook Construction
¢ Let’s select the message X Y
n °
set(Codebook) randomly. 20 .
X=X [ ) :
“ And, see if we can make P(e) . .
very small. . .
[ ] [ J
[ ]
*» Given a fan of size 2"/“""=") Hmrcxir=y) .

<
Il
«

decoding error occurs if
there are more than one .
messages within the fan.

— See the analysis in the
following page
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Shannon’s Key Idea:
P(e) in Random Codebook Construction (2)
QnH (X) QnH(Y)

< Steps: .
— Select the first message (the :
red dot) and send. , o
— With probability close to 1, we ° °
get the typical output y. : :
— Randomly select the rest of ° *
messages. :
— Consider the fan of y and find 2 (XIr=y) .

out the probability of decoding . =y
error. . .
— Decoding error occurs when * .

any one of 2"® — | other
messages falls within the fan.
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P(e) in Random Codebook Construction (3)

ot ary
¢ Ple)=1- (1 - —anT))
2nR
<1- (1 _ 2—n[H(X)—H(X|Y)])
~]— (1 _ rRoy=rH(X)=H(XIV)] )
— 2—n[1(X;Y)—R]
< Thus, as long as R is chosen slightly smaller than I(X; Y), P(e) decreases

to zero as n increases.

— Now we maximize I(X; Y) by selecting the best input distribution, and obtain the

capacity, C = max,, I(X; Y).
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Channel Capacity vs. Rate Distortion

< Source-Channel Separation Theorem

— Data compression (Rate Distortion Function) and Channel Coding can be
separately done without losing optimality.

% To explain, suppose
— A source is transmitting at an apparent data rate R [bits/sec/Hz] with
source coding error probability P,.

— The true source rate then is R(1 - H(P,)), which should be smaller than the
channel capacity C for near zero transmission errors.

— Per channel coding theorem, we must have
R(1-Hp)<C [bits/sec/Hz]
©200x Heung-No Lee 19

Capacity Lower Bounds on P, as a function of E;/N

#» CLB is very useful later on for the course.
— It provides fundamental bounds on bit error probability.

#,
@&{*

For a fixed R, we can find the capacity lower bound on
R=C/(1 - H(Py)).

%» Now, what’s left for us to find is the capacity at a certain £,/N,.

% Let’s find the capacity expression for two cases
— AWGN channel: C(E,/N,)
— BPSK over AWGN channel: C(E,/N,)

©200x Heung-No Lee 20




Shannon Capacity for AWGN Channel

¢ The channel capacity in [bits/sec] is

C =W logo(1 + %) = W log2(1 + )

ol C/W Unattainable
[bits/sec/Hz] region

Practical Systems

-/'\ log,(1+1)

0 10 20 SNR(dB)
112
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Shannon Limit

% The bit rate of the transmission
R [bits/sec] = R, [symbols/sec] x k [bits/symbol]

** Signal Power P = Energy per symbol x Baud =E; x R
» Energy per bitE, = E/k
“P=E xR
* P/N = (E, R)/(N,W)
¢ Thus, the spectral efficiency [C/W] is
C/W =log,[1+(E,/N )R/W)] [bits/sec/Hz]--------- (1)

©2004 Heung-no Lee 22




Shannon Limit (2)

% We are interested in finding the smallest E,/N, such that
error free transmission is possible
< In Eq. (1), substitute R for C in the right side of Eq.

%* Then, we have
C/W = log,(1+(E,/N ) C/W)),
% Arranging it for E,/N_, we have
E/N, =(W/C)2W — 1)
% Letx:=(C/W) = 0
0 E/N,=lim, , (1/x)(2x-1)=1log,2 =0.693 = -1.6
¢ This is the ultimate limit below which no error-free
transmission is possible no matter how small R/W we may
choose

ot

AR
H

LS

e
S
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Shannon Limit (3)
-1.59 dB
] oow

[dB]
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BPSK over AWGN

v Y=X+N
— X=1lor-1
— N ~ Gaussian (0, N /(2Ey))
< I(X; Y) = E{logP(Y|X)/P(Y)}

©200x Heung-No Lee 25

Capacity Lower Bounds on Py as a function of E,/N_
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Year
1950
1954

1955
1957
1959
1960

1961

1962

1963

1966

1967

1968

1969

1971

Table 1.1: Historical Milestones

Milestone Year  Milestone
Shatnon A ‘Mathematical Theory of 1973 Sugiyama et al. propose the use of the Buclidean
Commaunication” [309} algosithin for deeiding {324)
Hamming describes Hanuning codes {1371 1977  MacWilliams and Sloane produce the encyclopedic
Reed [284] and Muller [248] both present Reed- The Theory of Ermor Corracting Codes [220]
Muller codes and their decoders Veyager deep space mission usey a concatenated
Elias introduces convolutional codes [76] R8/convolutional code (see [231])
Prange introduces cyclic codes [2713 1978 Wolf introduces a trelfis description of block codes
A. Hocquenghem {1512 and ... 13771
Bose and Ray-Chaudheri {36} describe BCH codes 1980 14,408 BPS mudem commercially available (64-
Recd&So) produce cpony codes {286} QAM) (see { 160D
Pewenson provides a solution to BCH decoding [261} Sony and Phillips standardize the compact dise, in-
Peterson produces his book {2601, later extended and cluding a shortened Rewsd-Solemon code
revised by Peterson and Weldon [262} 1981  Goppa introduces algebraic-geometry vodes {123,
Gallager introduces LDPC codes {112] 124)
2400 BPS madem commercially available (4-PSK) 1982 Ungerboeck deseribes trellis-coded modulation
isce 11007 [3145]
The Fano alg for decoding i 1983 Lin & Costello produce their engineering textbook
codes introduced [RO} {2033
Massey umifies the study of majority logic decoding Blahut publishes his textbook {33]
{224) 1984 14,400 BPS TCM modem commercially available
Fomey produces an in-depth sudy of eoncatenated {12B-TCM {see [100])
codes [§7] and introduces generalized minimum dis- 1985 19,200 BPS TCM modem commercially available
tance decoding {88) {160-TCM) (see [100])

lekamp & a fast i for 1993 Bemou, Glavieux, and Thitimajshima announce
BCHfReed-Solomen decoding [22] turbo codes [28)
Rudolph initiates the study of finite geometsies for 1994 The Z4 Hunearity of farnilies of nonlinesr codes is
coding 1299} anacumced [138)
4860 BPS modem commercially available (8-PSK) 1995 MacKay resuscitates LDPC codes [218)
(see [100Y Wicker publishes his textbook [373]
Berlekamp produces Algebraic Coding Theory (25) 1996 33,600 BPS modem {V.34) modem is commercially
Galtronr nrodisas Infiventinn thang awd il ilable (sec (98]
communication [111} 998 Alamouti describes a space-time code [3]
Jelinek describes the stack algorithm for ing 1999 Chruswami and Sudan presen 2 list decoder for RS
couvolutional codes {165} and AG codes [128}
Massey inwoduces his algoritim for BCH deceding 2000  Aji and McEliece {2] (and others {195]) synthesize
222§ several decoding algorithms asing ge pussing
Reed-Muller code flies on Mariner decp space ideas
peobes using Green machine decoder 20062 Hunzo, Liew, and Yeapcharacterize turho algoritt
Viterbi introduces the algorithm for ML decoding of inil4i:
conyolutional codes [359] 2003 Koetter and Vardy extend the GS algurithm for soft-
9600 BPS nodeny commercially available (16 decision decoding of RS cades [191)
QAM) see (100]) 2004 Lin&Costello second edition (204]

2005 Moon produces whatis hoped to be a valuable book!

1972 ] SR algori is described in the opeu litera-
©2m‘5§)’pungg-ﬁx3 fee

Moon, pg 41

27

1973 Formey elucidates the Viterbi algorithm [89)
HW#0
TG .
~ S
— 6‘( g( ”
»  Read Chapter 1 C/M %
% Review the following items

- Entropy, Conditional Entropy, Mutual Information

- Source Encoder/Decoder
- Channel Encoder/Decoder

- BPSK and its probability of error

- Gaussian Channel

- ML vs. MAP~ which one is better?

- Union Bounds

- Binary Symmetric Channel

- Hamming Distance

- What is a code?

- Minimum Distance of a Code
- Coding Gain?

- Channel Coding Theorem and its Proof

- Capacity of AWGN
Difference between E, and E

Reproduce Figure 1.24 using MATLA

©200x Heung-No Lee
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Galois Fields

Evariste Galois [evaist galwa] (1811 ~ 1832):
Died from a wound obtained in a duel over a lover.

References: Ch.2, Ch.3Wicker 1995, Ch. 2 of Moon, Wikipedia

©2010 Heung-No Lee 1




Why study Galois Fields?

¢

# In the first class, we reviewed the channel capacity.

@,

% The capacity of a channel can be approached via a channel code.

< The lesson we learned from the channel coding theorem is that we
should use vectors, rather than single symbols to communicate over a
noisy channel.

“* What is a channel code then?
— A channel code is a mapping from a vector space of messages to a bigger

dimensional vector snace of codewards

S10Nat VECIOr Space oI coaeworas.

< Bigger dimension to accommodate redundancy information

©2010 Heung-No Lee

Why study Galois Fields?

% Algebraic codes developed early in 50s and 60s are mapping
from a vector space of dimension m,
over a finite field GF(g™),

into a vector space of dimension 7>m.

<+ A code is a subset of vectors of length n.

— Larger distances are obtained between codewords.

% Reed-Solomon codes
- n=qg"-1
— Over GF(g™)
— For a r-error correcting code, *m bits can be corrected.
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Algebra

< The word “algebra” comes from Arabic language.

— It means “restoration.”

+ In mathematics, it means a branch of mathematics that
deals with addition, subtraction, multiplication and
division.

©2010 Heung-No Lee 4

Different Representations of GF Elements

% An element in GF can be represented as vectors or as

polynomials. -
@ : (O T
% Ex) Polynomials of degree less than 2 over GF(2) Jeedo % 4 447
x2+1, x+1, @“iﬁf

— Sum of the two polynomials = x%+ x

%+ Factorization of polynomials

*» Codewords = polynomials = vectors = curves over GF

©2010Heung-No Lee 5
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Original Question asked in GF Study

2,

% “Why is there no formula for the roots of a fifth or higher degree polynomial
equation in terms of the coefficients of the polynomial, using only the usual
algebraic operations (addition, subtraction, multiplication, division) and
application of radicals (square roots, cube roots, etc)?” [Wikipedia]

=,

< Galois theory answers this question, as well as others, i.e.,
— Why we can do that for degree less than four?

« Ex) Roots of x? -4x + 1= 0.
— a=2+sqrt(3), b=2—sqrt(3).
— atb=4and ab=1.

<» Ex2)Rootsof x2+x+1=0.

©2004 Heung-no Lee

% Now), let’s begin
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Loose Definitions, for now

< (Abelian) Group is a set of objects that can be “added.”

» Field is a set of objects that can be “added,” and
“multiplied.”

% Vector space is a set of n-tuples, defined over a field, in
which the vector addition and the scalar multiplication are
well defined.

©2004, Heung-no Lee

Set

<+ Collection of objects, or elements
*# Cardinality, the number of objects

++ Consider a binary operation on two set elements which
yields a third element.
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Group G

“* A set of objects on which a binary operation +

satisfies the following 4 axioms:

— Closure: abeG = atbeCG

— Associativity: (@t b)+c=a+ (b+c)

— Identity: for all a € G, 3 an identity element such that

ate=eta=a

— Inverse: forall @ € G, 3 an (unique) element a! € G

such that ata'=a'ta=ec

*» The cardinality of a group is called the order of the group.

« Finite group, we call, when the order < co.

©2004, Heung-no Lee

Associativity

% Addition and multiplication are associative.
— Ex)

<+ Subtraction and division are not associative.
- Ex)

©2004, Heung-no Lee




Abellian Group

“+ A group is said to be commutative (or Abellian) if it also
satisfies
— Commutativity: forallag b€ G,a+b=5b+a

— Most groups considered in this class will be commutative.
— cf) The group of invertible matrix is non Abellian, i.e.

¢ 5o S

0 0 1

M )

©2004, Heung-no Lee

Examples of Groups

<+ The set of i integer % under integer addition (but not under o ddt A
multiplicatiyg inverse). JM\:L J ’
% The positive Fhtional numbers, under ordinary O\*f}:/ i
multiplication. - N{,O%,
% A set of integers {0, 1, 2, ..., m-1}, under modulo-m G -
addition. )
%+ A set of integers {34, 2, ..., p-1}, under modulo-p 74 W
- multiplication i i oA
T 1 ) e : ”P"mﬁ‘ I
M / — cf. Aset {0,1,23, p-1} is not a group un der modulo-p mult if p
1— not a prime. »- LE 50 PN I
' \ &‘) 5 O\')Q)BE ’_»'S‘ e et éﬁ ” %
/7 - J L// P {Vw
” o [~
D’L%j/vws@@%é-: L v / 2
13
’/R /l An v/ (/
T . AL y (—\}
i ’ H o <
* (2¥3)x3 - 4 ¢
Z -
K (2xlzy2N oale 20




Equivalent Classes

% Two integers a and b are in the same equivalent-class
modulo-m if a=x m + b for some integer x.

% Example
— Addition modulo m = 3 gives three distinctive equivalent classes
(labeled with the smallest non-negative integers)
c 0 {..,-3,0,3,6,..)
e {2 1,47,
26 {..,-1,2,58, ..}
< “Equivalent” in the sense that
-~ (+2=2mod3
- 3+2=2mod3
----- 0 can be substituted with 3 in operations w/out changing the
outcome of the operation.

©2004, Heung-no Lee Fall-02, University of Pittsburgh 14

The Order of a Group Element

“ Let g € G with a group operation *.
“ ord(g) is defined to be the smallest integer ¢ such that
gt:: gkgk---kg=e¢
t

% Examples

— Group of order 2 under modulo 3 multiplication {1, 2}.

— The order of element 1 is, ord(1) = 1.

— The order of element 2 is, ord(2) = 2.

©2004, Heung-no Lee 15




Subgroup S of a group G

** When a subset S of a group G forms itself a group, it is
called a subgroup of G. '

Closure: Ifany a, b € S, thena *b € S.

Inverse: If any a €S, then there exists a”! €8.

— Sis asubgroup of G, if the closure and inverse conditions are met.
— We say proper if S C G, butnot S=G.
<+ Example:
— The group of integers under modulo 9 addition contains the proper
subgroups {0}, {0,3,6}.
“» A simple way to construct a subgroup S of a group G
— Take any element g € G.
— A subgroup S generated by g is {g, g% &°, ..., g7%9}.

©2004, Heung-no Lee 16

Coset Decomposition of G

“* Given a group G and a subgroup S= {s;, 5,, ..., S

n}D

* *
8" 53 & " Sy

Coset Leaders

Choose

any element
in G

which

has not
appeared in
above rows

* *
83" S3 &3 Sn

* *
g, %83 g, *s,

q x n=the order of G
Every element of G appears once and onlv once in a coset decomposition.

©2004 Heung-No Lee 17




Lagrange’s Theorem

%+ If § is a subgroup of G, the ord(S) devides the ord(G)
without remainder.
— notation: ord(S) | ord(G) = ord(G) mod ord(S) =0

©2002 Heung-No Lee 18

Coset Decomposition Example

»G=/{0,1,2, ..., 8} is an Abellian group under modulo 9
addition.

% §=1{0, 3, 6} is a subgroup.
< Cosets are {0, 3, 6}, {1,4, 7}, and {2, 5, 8}.

“* The coset leZers are 0, 1, 2. W}ym\%/’\%f (;”/7 J; A
)0 ? b AN i
% 14~
Zj Z /8 {Ww j 1o \-
7 V/J ( a

©2004, Heung-no Lee 19




Ring R

«<» A ring R is a collection of elements with additive + and
multiplicative * operations with the four properties
— R is a commutative group under +.
Closure under *: For any a, b € R, the producta * b € R.

Associative * operation: (a * b) * c=a * (b * ¢).
— * distributes over +: a * (b + c¢) = a*b + a*c. o

:/

. .. / -
“* A ring is commutative if * commutes. gwg/
“2

—a*b=b*c

'\i
< A ring with identity -5 Z}Ugé? /\/oa/ /%

S NFET
~
— * has an identity element (labeled as “1). / 9 d#.
/\/64 L ‘
©2004 Heung-No Lee 20
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1

1
[
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Examples of Ring

% The set of integers does not form a field since most integers do not
have multiplicative inverse (3 x 1/3 =1, but 1/3 is not an integer).

#» The integers under mod-m multi and addition form a commutative ring
with identity.

% The set of all polynomials with binary coefficients form a commutative
ring with identity under standard mod-2 polynomial addition and
multiplication.

©2010 Heung-No Lee 21




Field ¥

% A set of elements F'on which + and * are defined is a field
iff
— Fis a communicative group under the additive operator + (The
additive identity element is labeled as “0”).

— F—{0} is a commutative group under * (The multiplicative
identity element is labeled as “1”).

— The distributive law holds: a*(b + ¢) = a*b + a*c.

% It is a commutative ring with identity in which every non-
zero element has a multiplicative inverse.

©2004, Heung-no Lee 22

Examples of Fields

< Infinite Fields
— The real numbers
— The complex numbers

— The set of rational numbers.

©2004, Heung-no Lee 23




Galois Fields GF(g)

%+ A field of g-elements, when exists, is unique (There is only
one.), and denoted as the GF(q), q is finite.

— Discovered by Evariste Galois.

%> The integers {0, 1, 2, ..., g-1}, where g is prime, is the
GF(g) under modulo-g addition and multiplication.

%+ This field can be sufficiently represented by the addition
and multiplicative tables.

©2004, Heung-no Lee 24
Examples of GF(q)
% GF(2)
t1o01 *1o1
0 01 0100
1 10 1 01
= GF(3)
+ | 012 x| 01 2
0012 0 000
1112 1 01 2
21201 2 021

©2004, Heung-no Lee 25




GF4)=1{0,1, 2,3}

< Note that 4 is not a prime, but is a certain power of a prime,
22=4.
< Note that here + and * are not modulo operations:

+|0123 *‘0123
0]o1 23 00000
111032 I {o1 23
212301 210231
3013210 31031 2

> GF(g™), where q is a prime and m > 1, can be constructed
with more complex operations than simple modulo
arithmetic.

©2004, Heung-no Lee 26

Vector Spaces

V'is a set of vectors.
%+ [F'is a field of elements called scalars.
“ Binary vector addition +.
— Forv,v,eV,vi+v,=veV
+» Binary scalar multiplication *
— Forv e Vanda e F,a*v,=veV
% Vis called a vector space over F if the followings hold:
Vis a group under the vector addition +.
ForanyacFandveV, a*v=ueV.
a*(v, + vy) = a*v+ a*v, and (at+b)*v = a*v + b*v.
Associativity: (a*b)*V = a*(b*V).
1*v =y, 1 is also the scalar multiplication identity.

nk b~

©2004, Heung-no Lee Fall-02, University of Pittsburgh 27




n-tuple vector space V,

V=V, Vis -ens Vot)
% Example: V;over GF(2)
- (0,0,0),(0,0,1), ...

«* The linear combinations of a spanning set G include all
vectors in G.

< A spanning set G which has minimal cardinality is a basis
foraV.

¢ The Inner product operator - :

“» Dual spaces of a vector space

— St is the dual space of S iff for all v, € St and for all v, € §,
v, - v, =0.

©2004, Heung-no Lee 28

Theorem 1: Order of an element divides g-1.

“ For GF(g), “order” is defined for multiplication.
z?if‘nget B e GF'(q)={1,2,...,g-1}.

Ord(P) is the smallest integer # > 0 such that f*=1.

¥i zéivides g-1 without remainder (Theorem 1).

— Note that {8, B2, B3, ..., p=1} forms a subgroup of GF(g) under
multiplication. 4

o

— As a subgroup, its size must divide the size of the original group
(Lagrange’s Theorem).

— This determines the range of possible orders.

» Example: {1, 3, 5, 15} is the range of orders ft ement
in GF(16). = ’MM”M ‘
’ o L v WG I
R e
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Greatest Common Divisor: GCD(a, b)

<+ The set of integers forms a ring under usual mult and add.

» Division Algorithm: For any pair of integers a > b # 0,
there is a unique pair of integers Q (the quotient) and r (the
remainder) such that

— a=@b+r,where 0 <r<|b|
— Cf. a =rmod b (ais congruent to » modulo b.)

— bla when r =0 (b divides a w/out remainder; b is a factor of a)

“ Fora, b € Z, GCD(aq, b) := the largest divisor m of a and b,
i.e., m|a and m|b.

©2004, Heung-no Lee 30

Euclidean Algorithm
Theorem 2: r,, is the GCD(a, b).

%+ Tterative algorithm to find the GCD(q, b), fora > b5 >0
% Lemma-1: Any common factor ¢ of a and b is a factor of r.

— We can write a=cx and b=cy forx, y>0.

- r=c(x-yQ) fromex = cyQ +r

— Note that (x — yQ) is non negative integer. t
%+ Lemma-2: Any common factor d of b and r is a factor of a.

— We can write b=dx and r=q¢i then a = dxQ + dz = d (xQ+2).

% Algorithm: dz
- a=bQ, +r 0<r,<b)
- b=rQtn (0<r<r)
- n=nQytn (0<r<ry)
= P2 = Q. (0< <)
- 7, =7, Quy (stop when zero remainder)

©2010 Heung-No Lee 31




|

Corollary

< Forany a, b € Z, dx, y € Z such that
GCD(a, b) = ax + by

(-0 @y 2 2=b (>
A

Z ‘(L: \(5@?-\. “{:é :> 3%\;:3";% i'vg,é ,—é é - (

\ 8= 6-0)t6 )

IRAE R %:{8@”&«%

[ = (6246 Y2)te2

N B

/ -\ D . )
!\ ©2010 Heung-no Leel Qi Tz ;}; éé = 4%((> + (8 32 = 8(4 )'4(/50*53‘”\

\ - (éug}‘; f;j + fgjz : :#_/gfg;),m%{;@

1

&: Lﬁx‘"" \("l _\ IO7\~ r//W\LdQ :7%'720
L= \ 7 - d \ /! ! — /;’" N

GCD Example L
GCD(66, 180) = 2

S b=4bJmo—s
180 /32 w?ﬁ . Q,

‘%‘ 5 ”(?* @

LAy =aeny MJ ,%y

“%(u/ A

} 33 R P
By 5
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Theorem 3
If ord(c)= t, then ord(c’ ) = ¢ /GCD(t, i).
/]

Let a and o be elements of GF(Ti). If ord(c)= ¢, then ord(a’ )
=t /GCD(t, i).
Proof: Show x divides and is divisible by 1 /GCD(z, /)
—  Consider (ai)t/GCD(t, = (OL’)’ /GCD(t, 1) =(1):/GCD(:, =1,
— Thus, x| £ /GCD(t, i).
— Now note (o)*= o = 1 since x is the order of o/ by definition.
— This implies ¢ | ix , which implies t/GCD(¢, i) | x.
* Note gi+r=GCD(J, ¢) for integers g and » and tu=ix for integer u.
e Multiply both side by x, then xgi+xre=xGCDC(, /) .
» Replace ix with zu on the left and have (ug+xr)t = xGCD(, ) .
» Divide both side by GCD(i,7), which shows #GCD(z, i) | x .

©2010 Heung-no Lee 34

The Euler Totient Function ¢(t)

g =[(1<i<t|Geni,n=1)|
T10-3)

where pe{0< p<t:p is prime and p |}

% Totative of ¢ is a positive integer less than 7 that is
relatively prime to .

< Totient = # of totatives

©2010, Heung-No Lee 35




Examples

@ g(l):=1

$(2) =1 {1}

& $(3)=2 {1,2}

& p4)=2 {1, 7,3}

@ $(5)=4 {1,2,3,4)

© P(6) =2 {1,2. 5. 4,5}

2 (7)) =6 {1,2,3,4,5,6)}
o B8y =4 {1,2,3,4,5,4,7}

@ $9) =6,
% ¢(10)=4, ..., etc.

©2010, Heung-No Lee 36

Euler Totient Function (Cont’d)

% Properties

{1y ¢(p)=p—1, when p is prime.

2y ¢py-p)=0) - o) = (o, — 1) (P, -1),

when p; and p, are distinct primes.
1y g™ =p™! (p-1), for prime p.

2y ™ py™) =p™! p,™! (p, — 1) (p, -1), for distinct
primes p, and p,.

©2010, Heung-No Lee 37
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Multiplicative Structure of GFs

(Theorem 4)
In GF(q), | g-1 means there are ¢(f) elements of order .
Rk
Proof: e “L ‘
w ‘7 <+ Suppose t = ord(ar), o € GF(g), then {a} a2, n’L’J{? _20.
T dre ,M-pfs contains all the solutions to x— 1 = 0. dL r
“otal <+ Then, all the elements of order t are in {a, az, ..., oﬁ}.
Bur <+ We know ord(8) = t/GCD(z ?) fora#t 5= cof. (Thm 3) ¢ K.
?M of {o,o J { Ord(e) = ¢, MGCD(, 1) = ool ‘f mrl(,
75 avped. “» By definition, then, there are qﬁ(t) such elements in 1a a2,
Codd 7k CL\5#7\Y\41" o Q) f ;‘G?’* l)
4\5\( //2\3"'./‘6

©2010 Heung-No Lee 38

70

In every GF(q), there exists a primitive element.

< An element with order g-1 in GF(q) is called primitive.

% In every GF(qg), there are ¢(¢g-1) primitive elements.
— Corollary to Theorem 4.
— Every GF(qg) has at least one primitive element (¢(t) > 1)
— If a € GF(g) is a primitive element, then

Lo, 02 08, ... %=1, o, o, .
L T 1y T
q-1 distinct Repeating
non-zero
elements in GF(q)

- {1, 02 08, ..., a8} = GF(q) - {0} = : GF*(q)

©2010 Heung-No Lee 39
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e Haom Example

% GF(7)=1{0,1,2,3,4,5,6}
- GF'()={1,2,...,6}
— Possible orders t| (q-1)= {1, 2,3, 6}.
— # of elements of order t

Ordert: 1,2,3,6

- qb(t): 13 13252
N 3 |ord@3)=
— Primitive elements are 3 and 5 ! 6/:;((71))@,6)
« Ex)1,3,3=2mod 7,3*=6,35=5,36=1. T
9( 1 |3 |s
3 - 2 |2 |3
3 16 |2
4 |4 |3
515 |6
©2010, Heung-No Lee 40
= RSP v /mc,‘.olu_epQ.
A A A

) N o Y K
WM\W‘WSMZ&‘O() ‘..-)o( i whoer e s N,

2(1), 3(1), 4D, .
JM"‘"”""‘A of Y@,Nego/&zv\a e s wm

» The sequence must repeat (finite field).

% Tl "m first one to repeat is zero.

o, 4,49,5, ) —\M)j% =) The frok ona To

/e s Jevo
Additive Structure of GFs gfeat s 3o

\(/ e e /s fafeﬁ\vlc‘wc _

% “1” I the multiplicative identity.

< Now consider > Q(M‘) oAt
0, 1, 141, 1+1+1, 1+1+1+1, UCstinet |

§ “g e j(1) is the fist one to repeat. M E}OU‘AYO'&\dW .

'

%2i(1) =k(1) for some 0 <k <j.
hen, k must be zero; 0.w., (j-k)(1)=0 is an earlier repetition than j.

Topou. P2QA %/\"’&

g’m‘u’\‘ V‘#
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Theorem 5

> The characteristic p of a GF(q) is the smallest integer, i.e.,

p(1)=0.
< Theorem 5: The characteristic p of a GF(g) must be a

prmxc IF’I{LE.,LF .
%f? bs charadeniste 0€éfﬁ?), P pome,

.
?‘« Z,=1{0,1,2,...,p-1}, p prime, is the GF(p) under mod-p

1« /11

i ) = 5o, 4,24 38 -, Ci?"%ij
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Theorem 6

e
% The order g of a GF(g) must be a power of a prime.
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Polynomials over GF(q): GF(q)[x]

Cagtayx'+ta, X2+ . +a x"
< a, € GF(g).
< Addition, 1\//I_ultiplication in GF(g).

N \ n v
’ )+ [ T4 Q:t"?) = I (a,+6; )%
R ce
S Lo ¢
Th7) = 5wl ) <
¢ j'o é’r'f?,‘g/)

A= Ar] € G Z‘x?

©2004 Heung-No Lee ¢

/ 2
Fapy» b(x) = 474 440
G\(x\'}%/“} = (‘ZZ"’ DI END.

\ = CFTFAT
Monic Wf an- g

Irreducible Polynomials in GF(q)

» Definition: A polynomial f(x) is irreducible in GF(q) if f{x)
cannot be factored into a product of lower-degree
polynomials in GF(q)[x].

% An irreducible polynomial f{x) has no roots in GF(q).

“* Examples: I

A+ e oK[,{J

/;"}i?;f e SRATE S o G ‘Pf:{“

(% 1) Wgrfea(mcé«@& Grtan f‘%c’%}(u
,)( FAEY 4+ ]

= f
©2010 Heung-No Lee }: -+ Zr{'f‘ . 45
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Primitive Polynomials

< Definition: An irreducible polynomial f{x) € GF(g)[x] of
degre@s called primitive if tfg]smallest positive integer
n for which f{x) | (x" — 1) is n=§"-1. .y M
— flx) has no roots in GF(g) - £ (e QL~ )
— flx) has m roots in GF(g”") which are primitive elements in GF(g¢™).

% Examples
7\ 2 g :»,p?(w‘ Lve in W("(ﬁmﬂ
i?lh(iklﬂﬂl«%b\ | /
PRUW Lmadient \’dﬂ k P dsrm )(
fnoh =V -\
©2010 Heung-No Lee 46

ﬁ() 4/4:" 240 iy pn”m,%:f{, e G?F/ z\)ﬁz’] Slatce

‘V\Ld/\! Lot Al eah /%”)ﬁ:/ ‘%’-\/ e f;@ SN wa//
2 Y o ! »
e 2 -

L.

Theorem 7

“* The roots {a,} of an m-th degree primitive polynomial p(x)
€ GF(p)[x] have order p™ -1.

ey ‘/r%:? "“/
Tax
or’ A ‘/m,«
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Construction of GF(8)

%+ p(x)=x3+x + 1 is primitive in GF(2)[x].
“ Let a be a root of p(x), i.e., a3+a+1 = 0 or equivalently a3

=a+l.
Exponential Polynomial Vector Space
Representation Representation

%+ Addition
ai+ o a° 1 |(1,0,0)
= (@2 +a)Ha? +a+l) al @ 0,1,0)
=1 o? a? (0,0, 1)

“*  Multiplication
at X ab = qttimodl=(2 ad a +1 (15 l, 0)

or at a?+ «a 0,1, 1)
:(a2+a) (az+a+l) ab a2+ a +1 (13 15 l)
= a*+a mod o +at] =a? ab o? + 1 1(1,0,1)

0 0 (0,0, 0)
©2010 Heung-No Lee 48
Construction of GF(4)

% p(x) =x%>+x + 1 is primitive in GF(2)[x].

% Let a be aroot of p(x), i.e., a*ta+l =0or a?>=a +1.
Exponential Polynomial | Vector Space | Label + 0 1 2 3
Representati | Representat
on ion 0 0 1 2 3
al 1 (1,0) 1 1 0 3 2
o o ©, 1) 2 2 |2 |3 fo |1
a? a+1 |1, 3 3 3 ]2 |2 |o
0 0 (0, 0) 0

X 0 1 2 3
0 0 0 0 0
0 1 2 3
2 0 2 3 1
0 3 1 2
©2010 Heung-No Lee 49




Summary

«» Every Galois field has at least one primitive element.

% The size of GF(q) is a power of a prime.

<» The smallest subfield of GF(p™) is GF(p), where p is a
prime and called the characteristic of GF(p™).

“» Primitive polynomial p(x) of degree m € GF(p)[x] has no
roots in GF(p) but has m-roots € GF(p™).

* The roots of primitive polynomials p(x) are the primitive
elements in GF(p™).

©2004, Heung-no Lee 50

HW#1

(Due Wednesday, 9/15)

% P2.1,P2.4, P2.5, P2.18, P2.19, P2.20, P2.22, P2.25
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Linear Cyclic Codes

References: Moon Ch.3, Ch. 4,
Wicker Ch. 4, Ch.5,

©201x Heung-No Lee

Agenda

* (n, k) block codes
“* (n, k) linear codes
% (m, k) cyclic linear codes
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Coded System

r=c+e
m C m’
Encoder Channel Decoder ——
Message Codeword T Received Decoded
vector word word

Error word e

% m, ¢, r and m’ are vectors: From Shannon’s work, we know block
processing of information over noisy channel helps, rather than
processing them in a bit-by-bit manner.

“» As the size of the block increases, the larger is the potential to
achieving the capacity; but the greater is the difficulty in decoding.

©201x Heung-No Lee

Kinds of Errors

«» Soft errors
— AWGN channel

“» Hard errors

— Quantizations

“» Erasures
— Loss of symbols, packets

©201x Heung-No Lee




(n, k) Linear Block Codes

<+ The block length 7.
+» The message length £.

“+*The code is g-ary when each coordiante takes a value from
GF(q).

«*Rate of the code R = log (M)/n, and k=nR.

“»Redundancy r = n —log (M)
) A

k

©201x Heung-No Lee

(n, k) Linear Block Code

*» A code C spans a vector space with dimension k. It is a collection of M
codewords.

% Linearity: For any a, b € GF(g) and any v, u € C, av € C and avt+bu =

cel.

— Ifcisacodeword, Oc =0 is a codeword.

— Let d(v, u) denote Hamming distance between any two different
codewords v, u € C and w(v) Hamming weight of codeword v
respectively.

— Then, d,;, =min d(v, u)

= min w(v + u)
= min w(c=v + u)
= min w(c), over all non-zero ¢ € C

It is the minimum weight of non-zero codeword.

©201x Heung-No Lee




A code = a generator matrix = a parity check matrix

“# A linear block code can be defined by either a generator
matrix or a parity-check matrix.

<+ (Generator matrix is obtained by £ linearly independent
codewords.
— The rows of G, generator matrix [#R x n] of a code, span the code space

“» The rows of H, parity check matrix [n(1-R) X n], span the
linear space perpendicular to the row space of G.

— There are n(1-R) number of simultaneous linear homogeneous parity check

equations.
— There are n(1-R) rows of H which span the null space of the code.
GH” =0

©201x Heung-No Lee

Distance Spectrum

» Hamming weight of a codeword is the number of non-zero
coordinates.

A, 1s the number of codewords with weight /4, =0, 1, 2, ...,
n, in a code C.

«* Distance spectrum {4,, /=0, 1, 2, ..., n} is a collection of
A,
* Polynomial representation is useful.

- A2 =D_A4,z"

- A, =34, =2
h=0

©201x Heung-No Lee




MacWilliams Identity

Moon, pg. 95

Theorem 3.6 (The MacWilliams Identity). Let C be an (n, k) linear block code over Fy
with weight enumerator A(z) and let B(z) be the weight enumerator of C L Then

-z \
B) =g "1+ (g -1 "A(—————-—), 3.12
(&) =g (1 + (g - 12) T+@-1: (3.12)
or, turning this around algebraically,
1 -z
) =g PR ~Dz)"B (._..__,MZ.,.__) . (3.13
AW =g "I+ g~ DB (s 3.13)

©201x Heung-No Lee

Max. Likelihood Decoding

Y— Decoding
Sphere

Decoding
Failure

% Encoding: m-> ¢, it is a mapping from a block of message bits to a
codeword.

: ¢ decision in favor of a message index m that

Ymp) O (v J M

a minimum distance décoding rule.

— Minimum distance errors dominate the error performance.

©201x Heung-No Lee
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Decoders

“ Complete decoders

¢ =min d(r,c)
ceC

** t-error correcting bounded-distance decoders

min d(r,c
é: ¢ d(r,c)<t ( ’ )

failure, if not a single ¢ is found

% Erasure decoding

— Error location is known

©201x Heung-No Lee

Minimum Distance Decoding and Correctable Errors

weight one

codeword j

codeword i

%> Note d

min

weight 3.

= 4. Thus, it can detect all error patterns up to

% MLD = minimum distance decoding.

«<* The blue ball is a decoding failure because it has the same
distance with codeword 7/ and codeword ;.

% A code with d,,,, can correct all error patterns of weight

<= floor((d,,;,- 1)/2)

©201x Heung-No Lee
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\/\'}’bﬂ“ . Upper Bound on Redundanéy r
(Gilbert Bound)

1
{

«» There exists a ¢-error correcting code of length 7 W1 ——————
satisfying r <= log,V (n, 21).
— Consider the pool of n-tuple vectors. There are g" such vectors.

— Choose one vector as a codeword, and eliminate all neighboring
vectors in the Hamming sphere V (n, 2¢) from future selection.

— Proceed until no selection can be made.

#

PRS- SOM———

V, o)

<
o

— This insures the code’s capability of correcting ¢ errors. %{”‘“
— ceil(q" 1 V,(n, 20)) is the no. of codewords since overlapping is | f ?4{
allowed.
— M=ceil(g"/ V,(n, 20)>=q" | V,(n, 20). 2 ¥
— ’i
— Redundancy r == n—log M < n—(n-log, V,(n 21)). % ’w 7\
©201x Heung-No Lee 'i’}ij"’g ‘;f‘fg be _
\ T ’V(f has | 1’;

A
?%’ WW@ %@ﬁt)

v




Error Correction and Detection Capability of a Code

“ A code can correct up to all -error patterns if

dmin_1
t<| ———
2

“» A code can detectup to all d,,,, — 1 error patterns.

* A code can correct up to e,-error patterns and detect all e,-
error patterns if
- et+te =<d_. —1
and
- e <e,

©201x Heung-No Lee 15

Simultaneous Correction & Detection
VS S

< Example with d,,,, =7 ), ,? e ‘
o Correct’% krror and detect 62err0“r"’si‘ ) o % AN
“ Correct 1 error and detect 5 errors 4 \ed
< Correct 2 errors and detect 4 errors V«f"/ 0
#+ Correct 3 errors and detect 3 errors v -

“d,, e te,+tlande,>=e; X

“+ Recoverup tod,,,- 1 erasures.

©201x Heung-No Lee 16
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Lo Qf(w
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Erasures and Errors

.{3%8‘)) —?4 =0

“ A code with d,,, can recover f erasures and e-errors if
2e +f < dmin'

— With ferasures, the remaining code still has minimum distance of
dmin —f:

N A

“boo 00 0@
29 g cothe toith d
m {/wf““ Romairt e . mﬁm&\%mﬂ@: o

.

©201x Heung-No Lee 17

Some Block Code Bounds

» How many vectors in n-dimensional space can be chosen
as a codeword of a code with d,,,,?

< What is the minimum redundancy required for a #-error
correcting g-ary code of length n?

< Only some bounds are available for these questions.

©201x Heung-No Lee 18




Hamming Sphere

%+ Consider, received = codeword + error.
*» A Hamming sphere of radius ¢ is a set of all possible received words
that are ¢ distance away from the codeword.
%> Weight of the error <=¢
*» How many error patterns (or the received words) are there in the
sphere (for (n, k) code over GF(g))
— No. of weight-one errors: n choose 1 x (g-1)
— No. of weight-two errors: n choose 2 x (g-1)(¢g-1)
— No. of weight-three errors: n choose 3-x (g-1)(g-1)(g-1)

Va(n,t) = Shg () (g — 1)/

<+ This is the number of error patterns a ¢-error correcting code can
correct where ¢ = floor((d,;,-1)/2).

©201x Heung-No Lee 19

Lower Bound on Redundancy »
(Hamming Bound)

“* A t-error correcting g-ary code of length » must have
redundancy r >=log V (n, 1).
— A t-error correcting g-ary code of length » requires a Hamming
sphere of size V(n, 1)
— How many such balls could n-dim space contain?
- q">= MV (n 1) where M is no. of codewords
gIM >=V,(n 1) o~ a% LA a’*
Redundancy r=n-— long > logq (n t)

Nttt N

©201x Heung-No Lee 20




Perfect Codes

“» Block codes that achieve the Hamming bound on

redundancy.

“ M must be of the form g*.

< A g-ary (n, k) t-error correcting code is related by

Sto (3)(a — 1)) = gk

“ Example) Hamming, Repetition, Golay codes.

©201x Heung-No Lee 21
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Linear Block Code (n, k) over GF(q)

Code C is a vector space with dimension £.
Linearity: Forall g, b € GF(g) and v, u € C, av € C and av+bu € C.

— Ifcisacodeword, ¢ + (- ¢) =0 is a codeword.

— d,,;, =min d(v, u) for v, u € C is equivalent to

dpin=min w(v - u)
=minw(c=v - u, 0), over allc € C,

— the minimum weight of non-zero codeword.
Completely defined by G or H, where GH™=0

— Gaussian Elimination gives systematic G and H.
r=c+e.
Standard array: all possible ¢ as the first row and some e as the coset
leaders.

©201x Heung-No Lee 22




Syndrome

< Given the I/O relation r = ¢ + e, a syndrome vector s is
obtained by

s=rH” = (ct+te)H” = eH”

—Non-zero s indicates “there is a problem.”

©201x Heung-No Lee 23

Syndeme Decoding @

< L=¢4€
P2
g T
¢ S 1y a codemwod %% eH=¢
« S=Y %%'f* \s (m-k)-tuple Vechr veprecenting
Loilures ™ gzﬁwsﬁwj ﬁwmﬂ%3 amd
*

depand Méﬁ om Evwov gﬁ@«%ﬁmﬁ
=y H = i&%ﬁi}ﬁ? eH'+ eH = eH
® ﬁgw&@&m& = Crenemted pont irj; check

+ Q&fﬁwm& ?ww‘%ﬁ cheek:

4 e
2= (Yo 0 Y, Vi, Yone tﬁgé P )= e Pe CanrYod Ly
«@f;
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g=X ?%Yﬁﬁéz‘ R RGACEY %“35{3 ' “&%@iﬁ 117 g%
w@a;"}i&gms} Yo
S “i?“
%g;;% Syndrvome
Shradnite

O £=gH

w {404 iﬁ%‘l}{?a} §§§ ”“‘%‘w@ % T

%
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Standard Array

“» Itis a [2(*0 x 2] table of words on length 7.

“» All 2" words appear once and only once.

*» It shows decoding cells.

** The first row lists up all possible 2* codewords.

< The first column lists up all 20 distinct error patterns e
that can be recovered.

©201x Heung-No Lee
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Standard Array for a (5, 2) LBC

Info bits 00 01 10 11 Syndrome

Codewords | 00000 01110 10111 11001] 000
00001 01111 10110 11000/ 001

Soma®le 1 00010 01100 10101 11011| 010  |pr£111)

Bror 00100 01010 10011 11101] 100 %(1)8
01000 00110 11111 10001| 110 010
10000 11110 00111 01001] 111 L001

Comectable | 10100 11010 00011 01101] 011

Patterns (w=2)| 10010 11100 00101 01011] 101

<+ Construct it row by row

— Make sure not to select the error pattern which have appeared already

2 When choosing the error patterns (15t column), make sure they lead to
distinct syndrome.

©201x Heung-No Lee
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d,.. and Detectable Errors

XS da.

min

C.

— The minimum Hamming weight of any non-zero codeword in C

is the minimum Hamming distance between any two codewords in

%+ Received = codeword(7) + error pattern
% When the error pattern itself is a codeword, then the received is a
codeword but is not the transmitted codeword (7).

— This is an undetectable error event. It happens IFF the error pattern is a
codeword.

— Syndrome is zero.
— Minimum weight of such error patterns is d,

min *

D
¥

can always be detectable.
1.

An error pattern with weight less than d,,,,
“+ A code with d

min

3

can detect all error patterns of weight <= d,

min~

©201x Heung-No Lee

The Singleton Bound (Linear Codes)

% The minimum distance dmin of a linear (n, k) code is
bounded from above by d,,,, <=n—k +1.

— An (n, k) code has a parity matrix which contains (n — k) linearly
independent rows.

— The dimension of row space, and thus that of the column space, is
(n—k).

— Thus, any collection of (z— k) +1 columns of H has to be linearly
dependent.
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Example

) , 2
%%WM%@% ¢
S N v B K‘E
O oo
6 0 0 1t/

TR L LT

e g% H Span. . Bofien . Jectr cpece .
w Hre e

Ho= Wi H*
Omin = 3 n-k+l=52+1=4

©201x Heung-No Lee
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Hamming Codes (Linear)

+ A single-error correcting perfect code with m >= 2 parity
symbols
- n=(g"-Dlig - 1)
- k=(@"-Dg-1)-m
- n-k=m
= i =3

— The simplest Hamming code, m=3.

©201x Heung-No Lee
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plde Gag)

{' 10 § I b o
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« Note ﬁ‘éé‘ﬁg 9%{‘ o§ mimm wgv H % mﬁ%&x&w&
* %5&1: Some colleton %% Z cobumns axe o
t%’ dﬁ%&w =3
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Decoding of Hamming Code

<» Compute the syndrome s =r HT =e HT
%+ Can correct all error patterns of weight =1

% For a single error occurred at j-th coordinate, the syndrome
is equal to the j-th column of H.

% Thus, decoding steps are
1.  Compute the syndrome.
2. If zero, then the rec. word is a codeword.

3. Ifnot equal to zero, examine if any match can be found from the
columns of H. Record the column index ;.

4. Complement the j-th bit of the received word.

©201x Heung-No Lee 34
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C4(colpooo)

= (toeo 1t ¢)

753%;;&.@ codgword
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g-ary Hamming Code with m parity symbols

<* Consider g-ary m-tuples
“ There are g™ — 1 distinct non-zero vectors.

% For each vector v, there are (¢ — 1) vectors that are
muitipies of v
— Foralla € GF(g), a * (v;, vy, V3, ...) = (a*v}, a*v,, a*vs, ...).
— Thus, v and av are linearly dependent for all a € GF(g).
<* There are (¢™ — 1) /(g —1) such sets of multiples.

— Select one vector from each set as columns of H.

©201x Heung-No Lee 36
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Linear Cyclic Code

“+ A linear cyclic code is a block code that is closed under
cyclic shifts.

% Consider the following examples:

0 0 O 0 0 O 0 0 O

0 1 1 1 0 1 1 1 0

1 0 1 0 1 0 0 1 1

1 1 0 1 1 1 1 1 1

- fe [ Cpeans Mo ¢ye rFe ;
[ ¢ nedn ot c?fcfcfc Ay feoneor
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/
w /BExample:
E{ P P A Tl bt

C" ¥\c\\J¢ v \'\\&)C

Polynomial Representation

< A codeword, ¢ = (cy, ¢, .-, C,p)
» Polynomial: c(x) =cy+¢c; x + ¢, x>+ ... + ¢, x™!
Syclic right-shift by j is %' c(x) mod x” - 1,denoted as ¢(x)?

> o

- xc(x)= coxiu\c1 xi\+ ot nl\x" mod x"— 1 ; ¢
=¢  +epx+ ... +cppx I mod x"— 1 ’C/ﬁd/” I
= X2 c(x) = et o+ ..+, X" mod ¥~ 1 ®@
=c x' Fe,x+ ... +cx"modx'—1

N\ =ec, ) et e, x" T mod x — 1
p 4 N
- i
‘E‘ 4{,!1’(‘/'7"(“‘”{'7‘5 - ;} M

3

kY

3 i:
‘y'\rs
=

S

)W |
* Every cyclic code has a generator polynomial '5() M
]

gx)=gytgxt..+g, d ciﬁ*'\' P
— Let g, = 1, unique monic polynomial of minimum degree (g, # 0). W
— It is a codeword. N
— For alength n code,@ n—k<=n-1. ,&’ A

“* g(x) generates its cyclic code. " 0y
— m(x) is a message polynomial with maximum degree £ — 1. \//{’ . ,,U
— Then, every c(x) = m(x)g(x) is a codeword. p{“f\‘f{ﬂ /f;/g 2 %w‘ \\\\\\\ S
cifﬁ - ’ P ad |
& 7 7 3
{y@‘t
40
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g-ary (n, k) Cyclic Code C

% C is a set of code polynomials.

* C has a unique monic polynomial g(x) — the generator
polynomial — with minimal degree r < n.
— For every code polynomia/ c(x) in C, ¢(x) = m(x) g(x).
— g (x7 1y in GF(¢)[x].

X Fron%ctorization of (x" — 1), we can select g(x) and A(x)
such that g(x)A(x) = (x" —1).

“ h(x) is a parity polynomial of degree £ = (n —r).

@;= c(x)h(x) =0 mod ("~ 1).

PR

— /

V//
(k) w @’;@?mc.. I -/ .

©201x Heung-No Lee

Generator Matrix G

0 e(0) = m(x) g0) = (my + x4 X))
=myg(x) + myxg(x) + ... +m,,.q X" g(x)
=[mgmy ... m,.][g(x); x gx); ...; x*"! g(x)]

%+ Then, the generator matrix G is

gogr - gr 0

0 gogdil - gr
gogr - gr

“ c¢=mG

©201x Heung-No Lee 42




Parity Matrix H

% §=C HT
ak\;:@ [ (CO C] e Cn_l)
% H matrix is

h’k: hk——l ce ho

0
hi hp_
0 kltk—1
e GHT =0
©201x Heung-No Lee h " v 43
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Factoring x” —1 K
% Whenn=g"—1, a

— All non-zero elements a € GF(g™) are the » roots.
— Separate these non-zero elements into conjugacyﬁglas‘spsf

~—~ L

— Compute the minimal polynomial for each c\lz}ége GF(g)[x].
+* When # divides ¢” — 1,

— Look for element  with ord(f)=r in GF(p™)

— Weknow 1, B, B2, B3, ..., B! are distinct roots of x” — 1

* Roots are generated by the powers of . So, these powers of  are
called the primitive #-th roots of unity.

(e N - Se.pe'lrate these roqts iqto conjugacy classes an'd compute the
é | 73 minimal polynomials in GF(p)[x] of the associated classes.
/

©201x Heung-No Lee 44




N\
.

%ﬂ ?@R‘V‘ﬁ%’ﬂ“‘ﬂ/ (2 ";> Com e M/H/?J/Wj/
g

In general

<+ The cardinality of a conjugacy class is the order of the
associated minimal polynomial.

“* Number of classes %’ the number of minimal polynomials.

Iz
gcmf&“fﬁﬂ/ 7

Frveclueci=le oLy ‘*imﬂwuﬂ-gs' M“ il

o5 e o Com

o )‘ s’;?'fK—Q A W"{D
Cv L
%\«L W‘DW(ACZ j[

-

e
)

be

AN

Qp(z\ meea ,
J Vv
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T — A%
%\Jb\ﬂj” g {;;(» < (d* L) Wﬁ{) i
A 7 T ’/:,a. -
SRIE Prlmmve n-th oots of unity The MO& Vv @ szf’ o
) e oo Hu

+* How do we find the ‘?

«* Recall from Galois Field Lectures ﬂﬁ\w‘%
— Ifn| (g™ —1), thenthere are ¢(n) elements of order » in GF(g™).

< Find the mallest extension field of a ground field
-5 J (24 —1), but not (23 — 1), (22— 1), or (2 —1). Thus, GF(16) is the
smallest extension field for finding primitive 5t roots of unity

— GF(27) is the smallest extension field of GF(3) for ﬁndin?
primitive 13t roots of unity 3

— GF(125) is the smallest extension field of GF(5) for finding
primitive 315 roots of unity e 4 q -

&) 2]5 :
/. /,3/5«{ ) /3/34

/3/3;*’
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Factoring x°> — 1 in GF(4)[x]

“* Note m=2 is the smallest such that 5 | 4”7 — 1.
— We can find the primitive 5% roots of unity in GF(16).
“» All elements of GF(16) can be represented by the powers
of a primitive element a.
** Note B:=o® which is an order 5 element.
— By the definition of order, the powers of [3, 1, B, B2 B%and B* (B> =

1) are distinct. rd q 2
— They are the 5 roots of x> — 1. g
» Conjugate classes wrt GF(4) 2 W
L/’ N
— {1 = x4l __;WW e
- {a?, ()%} = (-od)(x-a?)=x?+al®x+1 *
- {5 ()=} = (x-08)(x-0’) = ¥+ (a+a)x + ala’ |
= x2+(15x+ 1 /
12 N / - e 5, # ”
©201x Heung-No Lee (ot )= LKA / & £ >< z ol 47
/(\ » A
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Factoring x> — 1 in GF(2)[x]

<» Conjugate classes wrt GF(2)
- {1} = x+1
— {3, (0P, a2, a2 = 0%
= (x+o®)(xtal?)(x+as)(x+o) = (x? +alOx +1){(x>+a’x+ 1)
=x*+ (a1%0ad) ¥* + (Pal® +1+1) x2 + (a’*+a10)x + 1
=xt+x3+x2+x+1
— The polynomials are in GF(2)[x]

(L ﬁ*?tﬁ*f*%*~f¥
- -
e gmwixf]
ERA

©201x Heung-No Lee 48




Binary Cyclic Codes of Length 7

“» Find g(x) | (x” = 1) in GF(2)[x].
< m = 3 is the smallest such that 7 | (23 -1).
“# The 7™ roots of unity can be found in GF(8).

— They are in fact primitive elements.

<+ Find the conjugacy classes wrt a primitive element c.

- {l}a , = (x+1)
- {d, &%, o'} = (x*+x+1)
- {3, b, al2=0o’} = (3+x2+1
< Choose g(x) = (x+1) (x+x+1) = x4 +x3 +xF1.
% Then, A(x) = (x3+x2+1). )
Cras |
o+ oy x
©201x Heung-No Lee ﬁ_', f-{- ;(,L-r L

Binary Cyclic Codes of Length 7 (Cont’d)

P h(x) = x3+x2+]
s H= 1

@ m(x) = (1+x), c(x)=m(x)g(x)=1+x+x*+x5 = (1110010)

©201x Heung-No Lee
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4-ary Cyclic Codes of Length 5

“» We have factored x> — 1 in GF(4)[x].
(= 1) = e+ 1) + Px + 1)(x* +yx + 1)
¢ They are polynomials in GF(4)[x].
% GF(4)= {0,1,B=0o, y=al%
“+ Recall the table, but we want touse 2= and 3 =.

+ 10123 * 10123
0jlo123 0/0000
11032 110123
212301 210231
303210 310312

©201x Heung-No Lee
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4-ary Cyclic Codes of Length 5 (Cont’d)

% Choose g(x) = (x+1)(x? + y x + 1) = x3+(1+y)x>+(1+y)x+1
=x+Bx2+Px+1.
*» Then the corresponding A(x) =x*+ B x + 1.
> Thus, they are for (5, 2) 4-ary code.
e m(x) € {atbx: a, b € GF(4)}
— c(x)= (v +Bx) g(x) = Pat+(y+ PAXHyBHBIX>H(y B+HB) x+y

=Bx*+ 0 X+ B X+ 7y xty
corresponding to codeword = (y, v, B, 0, B)

~c=(1pp1 (181
G[lBBl]and H[IBI
1p1

) ‘
©201x Heung-No Lee .
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Systematic Encoding

< Consider (n, k) cyclic code with g(x)
Sm = (my, my, ... Myy) < mE)y=myrmxt+. .. +myxF
@ x"km(x) = mp™*tm XAy x]
& m=(0,0,...,0,my my, ... ,m,)
< xX"fm(x) = O(x)g(x) + d(x) where degree(d(x))
< degree(g(x))=n-k;.\:v7ﬂ
% c(x) = [x"*m(x) — d(x)] = O(x)g(x) is a valid code
polynomial.

#, —
" C = ['do, -dl’ ey 'dn—k-l’ mo, ml, e ,mk_]].

©201x Heung-No Lee 53

Systematic Encoding Rule

+» Multiply the message polynomial by x"*.
** Divide the result by g(x) and get the remainder d(x).

sy et
r

¢ Set c(x) = x"F m(x) — d(). ] "@l
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Systematic Encoding of (5,2) 4-ary Code

“G=[1pp10)] andH=(1001p
8101 010pp
001p1

©201x Heung-No Lee 55

Syndrome Error Detection

“* For systematic code
*» Note the codeword ¢=(-d, -d,, ..., -d, 4.1, My, My, .., My_1)
“» Thereceived r = (-d’, -d’ 1, coey =@ jys M s M5« M7} )

% Compute the estimate of the remainder d*= (-d*, -d*,, ...,
-d*, 1) using the received message block m’

%* The syndrome is s =d’ — d*,

Nee 5= H'v = [2 F) [5‘]

ml

= 4’5
=4 +PY

©201x Heung-No Lee 56
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Syndrome Error Correction

@ 5(x) = spt s+ s, xnt OW)VH-\‘ Y‘UO

€\ 560 = r(x)h(x) modulo (v 1). (0 vl 1) b 3
* Or, it can be obtained from\/(x) = a(x) g(x) + s(x) éf\? o tope

degree(s(x)) < degree(g(x)) =n—k.
«<* Tabulate the error pattern for each syndrome.
¢ Or, use the shift register circuits for decoding.

©201x Heung-No Lee
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Syndrome Error Computation

Prx)=rytrxt . tr, xv!
<+ By cyclically shifting the coefficients of 7(x) once to the
right we have
rO(x) =7, +rgct . tr,xm! Y- €
S xr(x)= roxt rx? + Ar, X"
% rD(x) = xr(x) —r,q (x"- 1)
+» Express r(x) and »((x) as multiples of g(x) and remainders
S rD(x) = x(a(x)g(x) + s(x)) — 7,1 &(x)h(x) = b(x)g(x) + d(x)
% xs(x) = [6(x)- xa(x) 47y h(x)|g(x)+ d(x) T

<% Thus, xs(x) mod g(x) is the syndrome for »(I(x) 30
—
\
s%x)

©201x Heung-No Lee
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Summary of Linear Cyclic Codes

©201x Heung-No Lee 61

What’s in Moon Ch3. and Ch4?

< MacWilliams Identity

%+ Soft-Decision Decoders

% Coding Gain

<+ Shortening/Extending Block Codes

©201x Heung-No Lee 62




Midterm

< Oct. 271, 2010, Wednesday
<+ One single page cheat sheet

“» Coverage
— Moon Chapters 2, 3,4, 5,6

©201x Heung-No Lee 63

HW #3

«» Problem #1:
Moon P3.3, P3.8, P3.20, P3.26, P4.1, P4.9, P4.11, P4.15

«* Problem #2: g(x) = x6+3x3+x*+x3+2x2+2x+1 is the
generator polynomial for a (15, 9) double error correcting
code over GF(4)

— A)is v(x) = x'94+3x2+x+2 a codeword?
— B) Compute the syndrome polynomial of v(x)

— C) How many syndrome polynomials must be tabulated to cover
all correctable error patterns?

©201x Heung-No Lee 64




BCH and Reed Solomon Codes

Ref: Moon Ch 6, Wicker Ch. 8,9

©201x Heung-No Lee 1

Brief History

< Algebraic cyclic codes, done mostly in 50s and 60s.

4,
s

Code design: Hocquenghem[59], Bose and Chaudhuri[60], Reed and
Solomon[60]

— Umaranteed f-error correcting code.

A

% Decoder designs in 60s: Peterson, Gorenstein and Zierler, Chien,
Forney, Berlekamp, Massey

— Berlekamp’s iterative algorithm and Chien’s search algorithm considered
most efficient

&
L

Decoder design in 90s: Sudan and Guruswami’s list decoder capable of
decoding beyond the design distance of the code.
— Covered in Moon Ch. 7, better to read their papers.

©201x Heung-No Lee 2




Motivation for Studying BCH and RS Codes

%> Most successful algebraic codes.

«» What is the current status of these codes?
— Google, Wikipedia

©201x Heung-No Lee

Coverage in this course

% Code design
<+ Review of some basic decoders

©201y Henpo Ng 1 ea




Question of Distance Measure in GF(p)

2
p?

% Can we define a set of positive or negative numbers in a finite field?

-~ No. Just think of Z, where p is ptime. Mod-p are the operations. Under modulo
operations, can we think of the notion of positive or negative? O.K. but why?

< Ordered fields: real, rational, complex numbers.
— A field must satisty Axioms of Order (Real Analysis by Royden)
s X,yeP)=>x+yeP (P is a subset of positive real.)
* (X,yeP)=xyeP
s XeEP)=>—xgP
s XER)=>(x=0)or(xeP)or(-x€P)
— Any system satisfying the field requirement as well as this Axiom is an
ordered field.
— Notionx>yistomeany —x € P.
> A field can be an ordered field IFF it has characteristic 0.
0<1, 1+1, 1+1+1, ...
<+ A finite field cannot be turned into an ordered field, because they do
not have characteristic 0.

&y

©201x Heung-No Lee 5

The BCH bound and BCH codes

< Code design starts with selecting a design distance D.

% The BCH bound ensures the minimum distance of a code:
— Consider a g-ary (n, k) cyclic-code with g(x) for which GF(g") is
the smallest extension field that contains a primitive n-th root of
unity a (i.e.n| g” —1).
— If g(x) is constructed by a set of D consecutive powers of o, the
code defined by g(x) has minimum distance, d,;,, > D + 1.

» Proof: see next pages

< Select D = 2¢. The code can correct all errors up to f-errors.

©201x Heung-No Lee 6




Generator/Parity Check of BCH codes

% g(x)=LCM of minimal polynomials for the D consecutive powers of
o
— LCM is the sufficient condition that the roots of g(x) are the D consecutive

iy
powers of a. +c(¢fc21'+_\__*cn y o™
% A code polynomial c(x) is a multiple of generator polynomial. (<

c(ab)=c(abtl)y=...=c(atP)=0 forsome b=1,2,...)

— Nomenclature: Narrow sense (b = 1) and primitive (n=g" — 1)

% Consider s = He":

1
{ hase 1 ot o2b D b ¢ =0

D ' 1 bt P TGS DR T D B PR D () .
@%5 U\Ne/ 1 ab+2 a2t2)  306t2) o q(n-D(6t2) 2
Ou 1 obtDl QABD)  GIBDT)  (nD)(B+D-T) Con)

(: h. In I ©2f)lx HeungJ:l/o Li / év\&\@hw\b\yfé/@ / 7

o) L ‘l\»n% ey emdm M’b;
\'g

\/vv’“’~ ol wnsrs  Lam be ‘Conveied,

roof of the BCH Bound

W a support set of indices, {i, i,, ..., i,,}, on which the codeword ’) 2 wH -
@ coefficients are non-zero.

— Note then that the weight of the codeword is w. 6\,\/\5\&5
» Proof by Contradiction: Suppose w < D, and show it leads to
contradiction

Y I \L

e 28 Lo gD e
L22 P
e e, Wﬁl
1 (b+D-1) G+ wbDD
S " )\e, (

— This matrix is D x w.
— The w columns should be linearly dependent.

— However, a mathematical fact dictates that the matrix is full rank and thus
the columns are linearly independent. (see next page)

— Thus, any weight w should be w > D.

©201x Heung-No Lee 8




Proof of the BCH Bound(2)

# (Since w < D, we can eliminate the rows from below and obtain a square w x
w matrix. ) ’

% The equation in the previous page can be rewritten as:
1 1 e 1 ailb 0 C,l
dofict ™ |

M . N :—7 = (wal)

aq(w—l) aiz(w—l) aiw(w—l) 0 a,'wb c

% This leads to det(H) # 0:

1 1 1
det(H) = g"t1+iz+ i) ! a® e aM
al (.w—l) aiz (.W*l) . aiw;w—l)
= g Pl i) H (aik — ) 20 QE.D.
©201x Heung-No Lee lSj<kSW 9

Binary BCH codes of length 31
(Primitive BCH codes)

% Let a be a primitive element of order 31 in GF(32).

“» Use the add-one tables, and Appendix C and Appendix D
to find the conjugacy classes and the minimal polynomials

Exponents of o Minimal Polynomials

(Cyclotomic Cosets) v 1L 3 ¥

o Z
Cy= {0} Olz 0(7/ ml d AM(O) =x+1
C =1{1,2,4,8,16} 1y )

My, =x+x2+1

Mg, =x3 +xtd +x2 + 1
M, =% +xHx +x! + 1
Mg =x3 x4 +x! + 1
My = x5 +xtxd +x! + 1
M5 =% +x3 +1

C,=1{3,6,12,24,17}
C,= {5, 10,20,9, 18}
C,= {7, 14,28,25,19}
C, = {11,22, 13, 26,21}
Cs={15,30,29, 27,23}

©201x Heung-No Lee 10
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Example BCH codes /\j \

j): = My 1{ =) 07
«* Binary BCH codes ' K= 7
— A t=1 error correcting (31, 26) primitive BCH code (D = 2t = 2)
— A t=2 error correcting (31, 21) primitive BCH code (D = 2t = 4) =3

=27

©201xHeung-No Lee 13

4-ary BCH codes of length 21

< First, find the extension field GF(4™) which contains a
primitive 215 root of unity y.
— Such an m is 3. Thus, it’s GF(43=64).
— We can let Yy =a3 where « is a primitive element of GF(64).

“* Second, decompose the 21 roots into conjugacy classes
(taking it to the powers of 49, d=0, 1, 2, ...)
— Find the minimal polynomials associated with each class, note that
the coefficients are from the ground field GF(4) = {0, 1, y” = B, y!4
= B2} .

©201x Heung-No Lee 14




Cosets and Minimal Polynomials
for 4-ary BCH of Length 21

Exponents of y
(Cyclotomic Cosets)

Minimal Polynomials

CO: {0} M(U)zx-}—]

C|={154516} M]:x3+ﬁzx+1
={2,8,11} w_

Cz {a s s M(Z)—x3+BX+]

C;=1{3,12,6} M5, = x3+x2+ 1

Cs={5,20,17} M5, = x>+ B2 x2 + 1

C,= {7 '

7 S M(7)—x+B
Cy={9,15,18} My, = %3 +x +1
CIO:{10519’13} M10=X3+ﬁx2+1
Cy={14) M,, =X + p2

©201x Heung-No Lee 15
Non binary BCH code examples
“* Non Binary BCH codes

— Use Appendix B only

— 4-ary BCH codes of length 21
s r=1
s t=2

©201x Heung-No Lee 16




Some Design Considerations in BCH codes

%+ The redundancy r is the number of roots in g(x).

% In t-error correcting BCH codes, having 2 consecutive powers in g(x)
is the sufficient condition for having
Aopin 2 26+ 1.
“+ For the same error correction capability, a code with a higher code
rate, or with a lower redundancy, is certainly desirable.
“* g(x) contains more roots than required number of roots, » > 2¢. Why?
— The cardinality of conjugacy class is greater than 1.
— The extraneous roots are conjugates of the desired roots.
% One way to deal with this problem is to

— Choose the starting power exponent d wisely, i.e. ab, ab*!, ..., a?*P! so
that the number of extraneous roots are minimized.

©201x Heung-No Lee

Some Design Considerations in BCH codes (2)

% The larger the cardinality of conjugacy classes, the more g(x) contains
extraneous roots.

% Now, let’s think about how to reduce the cardinality of conjugacy
classes?

< Observation: the cardinality is smaller for
— Primitive codes such that n= g™ — 1 for a fixed g-ary symbol alphabet.
— Codes with the size of code-symbol getting closer to 7.

< Reed-Solomon Codes
— g™-ary BCH codes of length ¢ — 1.

©201x Heung-No Lee




Reed Solomon Codes

< RS codes are g”-ary BCH codes of length n =g — 1.
— The primitive n-th roots of unity are in GF(g").
— Let a be such one, and then the powers of o are the » distinct non-zero field
elements in GF(n+1).

3

4
s

Now, consider ¢-error correcting codes.
The minimal polynomials for each element in GF(g™) wrt GF(g™) are
first degree polynomials, i.e.
(x-a8),fors=0,1,...,n
The size of conjugacy classes is always equal to 11!

%

“,
b
é‘&

o

¢+ Thus, g(x) is the product of 2¢ first degree polynomials, i.e.
g(x) = (x - ab) (x - oty ... (x - a*2-1)

©201x Heung-No Lee 19

Reed Solomon Codes

% The minimumn distance of an (»n, k) RS code is d,,,, = n-k+1.
— Achieves the Singleton bound, and thus they are maximum

distance separable codes.

©201x Heung-No Lee 20




Examples of RS codes

<+ The ¢t = 2 error correcting RS code of length 7.
% The t = 3 error correcting RS code of length 7.
%+ The t = 3 error correcting RS code of length 63.

©201x Heung-No Lee
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Decoding Outline

% Compute the syndrome

** Determine the error locator polynomial.

% Find the roots of the error locator polynomial.

+» Determine the error values. (for non-binary case only)

©201x Heung-No Lee
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Decoding

“* Note that g(x) is selected to have its zeros the 2¢
consecutive powers of a such that

glo) =g(o’) = ... = g(a*) =0.

< Thus, c(x) = m(x)g(x) = cy+ c; x + ... + ¢, ' must have
the 2¢ consecutive powers of o as zeros.

wrx)=clx) +elx),e(x)=etex+..+e,  x\

©201x Heung-No Lee 23

Syndrome, Error Values, and Error Locators

%¢ The syndrome can be evaluated at each and every 27 zero:
s(x) = r(x=ov)
wherej=1, 2, ..., 2¢.

“ Let’s call S, = r(x=at) = e(oV) = X" ¢, (o¥)". Note that this can be
evaluated using the receive polynomial r(x).
7 y
“ Asstime P errors happened in coordinates 7y, iy, ..., ip, then
S, =257 e; (W)p - _
=(binary case only) X.,_,” (/) = 2F,; X/,
forj=1,2,...,2t

Ex)e=(00¢, 0, 000)=ij=21i=4

AR

©201x Heung-No Lee Oy %




Syndrome Equation wrt P Error Locators pr'

<+ The 2t syndrome equations are
Si=e X, te, Xy +... te X, A

- 2 2 2

S, = e,-le + eizX2 +...+ eprP

(1) L@}uwx@ Cocort

Sy=e X e oM+ e X2 ) P wndengwz ¢

at eFuodme

% How do we find the error locations {)(;7, p=1, ..., P}? [P ann, P {'t
©201x Heung-No Lee W [LV\VL@M, (,% (}%ﬂm‘{ 25
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Error Locator Polynomial A(x)

% Consider the error locator polynomial A(x) that has the P 1/X,, as its

% We can express the coefficients A, wrt X, i.e.

Ap=1

A=X + X+, X,

A= XX, + XX, + ... " @)
Ap=XX,... X, J

©201x Heung-No Lee 26




Newton’s Identities (Binary case)

% Using (2), (1) can be rewritten as
S, +A =0
S+ AS +2A,=0 P =4 Example
S5+ A8, + AyS, +3A,=0
S, + /\,S3 A8+ A8 +4A, =0
S+ AS, + AxS;+ AsS, + AS, =0 t>p

So T Myt ¥ A8y T AGSys + MySy = 0.
% Note that there are 2¢ equations and up to four (P=4) unknowns.

©@201x Heung-No Lee 27

Newton’s Identities (Binary case)

% Assuming binary case and P = ¢ errors have occurred, the syndromes
and the coefficients of the error locator polynomials are related by the
following:

S, +A, =0
Sy + AS, + AyS, + Ay =0
Sy AS, + AySy + AS, + AS, + Ag=0

St T A Syt HAS= 0.
< In binary case, S, = S?

ik

©201x Heung-No Lee 28
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Peterson’s Direct Solution Decoding Algorithm

(Binary)
_ 1 x t matrix
& AA= . - ~
1 0 0 O 1} 0 A, _ -8,
S, S 10 0 0 A, - -S3
S, S, S, S 4. 0 0 As -8,
SZ/-Z Szr-3 S21-4 Szr—5~" Sl SI-I A/ -S
"w 2r-1

%+ A is non-singular (thus the equation has a unique solution) if there are ¢
or ¢ -1 errors in the rec. word. [Peterson]
If fewer than £ — 1 errors have occurred, A is singular.

> Then, eliminate the two bottom rows and the two rightmost columns of
A and see if the remaining matrix is non-singular.
Proceed with decoding if non-singular; otherwise eliminate more.

%* And so on for even fewer errors.

)
P

s

©201x Heung-No Lee 29

Chien Search

% Once the error locator polynomial is found, use the Chien Search (a systematic
exhaustive search over all elements in GF(2™)) to find the roots.
P Ax=a)) -,
A =TTe” (1= X, x) =l ApxF + Ap x4 L+ Ak 1

o

A

% Take a primitive element « and find all roots x s.t. A(x) =0.

-

o

S By definition, X0 = (). Thus, if the CS gives X7 = o, then X, = ot

4 A’;:d/\x’f' 0‘\2/1&*"“*{35’?/“/’[}

/J\ i=¥1,2, .27~ 1.

f,= dz/\, + (oe'zl)q/\g %fo?:f/\fa

©201x Heung-No Lee Figure 6.1: ijén search algorithm. 30
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Peterson’s Direct Solution Decoding for Binary ¢-Error
Correcting BCH Codes

Compute the syndromes for #(x): {S;} = {r(o¥)},j =1, 2, ..., 2¢.
‘. Construct the syndrome matrix A.
3. Compute the determinant of A. If non-zero, go to step 5.
If zero, reconstruct a smaller matrix A by deleting the two last
columns of old A. Go to step 3.
Solve for A and construct ELP A(x).
&, Find the roots of A(x).

— If'the roots are not distinct or no roots, then declare decoding failure.
Else, go to step 7.

% Complement the bit positions in r(x) indicated by the ELP A(x).
Verify if the resulting corrected word satisfies all 27 syndrome
equations.

— Ifnot, declare decoding failure.

©201x Heung-No Lee 31

Some Simple Cases

<+ Single Error Correcting
— Al = Sl

#» Double Error Correcting
— Al = S]
- A= (5 +SP)S,

«» Triple Error Correcting
— Al = Sl
— A= (538 SHASPE+S)
- A= (SPHS) +SA,

©201x Heung-No Lee 32




Binary Decoding Examples

<> Double error correction using the Peterson’s algorithm
with a code capable of correcting up to ¢ = 2 errors.

%+ Single error correction using Peterson’s algorithm with a
code capable of correcting up to = 3 errors.

©201x Heung-No Lee W 33
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Servation from the two previous exampl

< The first example shows that the algorithm must check/the
singularity of the largest ¢ x ¢ matrix.

- FPoP=Tcthke T i

— But for P ==, the xZnatrix Ais also

<+ The second example shows that the 3 x 3 matrix is

singular; finds 1 x 1 matrix non-singular.

<+ Thus, we must check singularity of the largest # x ¢ matrix
A anyhow.

©201x Heung-No Lee 34




Decoding of Non-Binary BCH codes

%+ Not only the error locations but also the ervror values need to be
determined.

# Using 2¢ roots, we get up to 2¢ equations, which contain up to ¢
location-unknowns and up to ¢ error-value unknowns.

Perterson-Gorenstein-Zierler algorithm

2. Berlekamp-Massey algorithm
— LFSR based

%, Euclidean algorithm

©201x Heung-No Lee
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The PGZ Decoding Algorithm

ey

% Take the error locator polynomial again
A(x) =TT (1-X,x)
=ApxP+Ap xXPU A X+ T
At =X
A(X I) APX P+ Ap, ,X'P“ AKX =0,

e Multiplye X/ to both sides of the hox:
APe Xf +AP_1e X+ +Ale X/ +e XJ =0.

Repeat for each p and take the sum over all p, M

ApSip+ Apy Sppiyt oo T Ay Sy + 870 3)

4,
g

forj= P+, ..., 2P.

©201x Heung-No Lee
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The PGZ Decoding Algorithm

t X t matrix
& AA= )
Sl SZ SB S4 S/-l A/ J— "SHI
SZ SS S4 SS 1 Al-l - 'Sn:
S} S4 SS S() SIH AI-Z 'SIH
\Sl Si+ 1 sﬂ*l ers o S_’/-Z Al -SZ'
% ~

@
o

« A’ is non-singular (thus the equation has a unique solution) if there are

t errors in the rec. word. If fewer than ¢ errors occurred, A’ is singular.
[Gor61],[Blahut84]

&
b

Then, eliminate the bottom row and the rightmost column of A’ and
see if the remaining matrix is non-singular (see if |A’|  0).

Proceed with decoding if non-singular; otherwise eliminate more.
And so on for even fewer errors.

g

5,
e

©201x Heung-No Lee 37

Error Value Computation

% Once the P error locations are known, the first P syndrome equations
can be used to find the error values.

# Note that it is a Vandermonde matrix with P non-zero distinct values.
— Thus, non singular!

X, X, - X, \(e) (S
x2 x2 o x|le | |s
Be: :l :- . :P :z — '2
xox; - x)\e, ) \S,

©201x Heung-No Lee 38
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The PGZ Decoding Algorithm
[Wicker, pg. 216]

Compute the syndromes.

Construct the syndrome matrix A’.

Compute the determinant. If it is non-zero, go to 5.

Construct a new syndrome matrix by deleting the rightmost column and the
bottom row. Shorten /A by one coordinate position by deleting A, for the
largest remaining 7. Go to 3.

Solve for A and construct A(x).

Find the roots of A(x). If they are not distinct or A(x) does not have roots in
the desired field, go to 10.

Construct the matrix B and solve for the error values.

Subtract the error values from the values at the appropriate coordinates of the
received word.

Output the correct word and STOP.

4. Declare a decoding failure and STOP.

©201x Heung-No Lee 39

Decoding Examples

“» Double error correction using (7, 3) RS codes capable of

correcting ¢ = 2 errors.

©201x Heung-No Lee 40




The Berlekamp-Massey Algorithm

%+ Computationally efficient than the Peterson algorithm.

% Tt uses eq. (3) where P the number of errors is unknown.

— It builds the order P error locator polynomial starting from scratch,
say order L =0.

— See if the current polynomial can generate the observed syndrome
sequence, starting from the first syndrome, say k= 1.

— When the polynomial is not the correct one, discrepancy between
the output of the equation and the observed syndrome will occur.

— Use the discrepancy to update the polynomial, and continue until
the updated polynomial is capable of generating all 2¢ element of
the syndrome sequence, £ = 2t.

©201x Heung-No Lee 4]
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The Berlekamp-Massey Algorithm

% Five basic parameters:
— the indexing variable &
— the connection polynomial A®(x) =Apct +A, xF + .. +Ax + 1,
— the correction polynomial 7(x),
— the discrepancy A®, and
— the length L of the shift register.

% The syndrom S; can be expressed in a recursive manner (Recall (3)):
—Sj =ApS, p+ Ap S, py+oo+ NS
s s s

S le € s .

©201x Heung-No Lee LFSR Interpretation for the Syndrome e




The Berlekamp-Massey Algorithm

i, Compute all 2¢ syndromes for an r(x).
Initialize: =0, A®(x) =1, L=0, and T(x)=x.
Set k= k + 1. Compute the discrepancy A®: A*) =S, ZA(k S, .
i=l
If AW=0, go to 8.
Modify the connection polynomial: A® (x)= A% (x)— A®T(x)

&, If2L >k, goto 8.

. SetL=k—Land T(x)=A%"D(x)/A®

& Set I(x) =x T(x).

% Ifk<2t,goto3.

{43, Determine the roots of A(x)=A?)(x). If they are distinct and lie in the right

field, then determine the error values, correct the corresponding locations in
the received word, and STOP.

Declare a decoding failure and STOP.

©201x Heung-No Lee 43

Key Equation for BCH/RS Decoding
A(x)S(x)=Q(x) mod x*'

» We define
21=1
— Syndrome polynomial S(x):=) S, x’
j=0

= S@) =S8, +Sx+ .. S+

— Error value polynomial Q(x)

Q(x)= S(x)A(x)
=(S +S,x+--)(1 A X+ A x+-)
=0, +Qx+Qyx” +o

©201x Heung-No Lee 44




Key Equation (2)

<* Note that EVP contains the error values e i)

211

S8 ax )A(x) mod x*

Jj=0

Q(x)= Sx)A(x)= (

= [ZIZ_I(ZP: e,le’f| ij }A(x) mod x*

(xXP )j}\(x) mod x*

1_ /Y 27
= ZP:%Xn _ﬁ_”-)— A(x) mod x*

p=t 1-X,x P
» Use A(x):l_[(l—X,x)
ZZ"'”XPH(I—X/X) =1
p=1 I#p
©201x Heung-No Lee 45
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e
o
Definition 6.5 Let f(x) = fo+ fix + f2x2 4.+ fix* be a polynomial with coefficients
in squtie field F. The formal derivative f'(x) of f(x) is computed using the conventional
rulés of polynomial differentiation:
F@) = fi+2fix+3fax’ 4 +1fix L, (6.33)
" where, as usual, mf; form € Z and f; € T denotes repeated addition:
mfi=fit i+t i
m sumvmands
»—/Mmm“\
Theorem 6,16 (Forney's algorWhe error values for &-Reed-Solomon code are com-
puted by h .

',,"'(6434)
where A’ (x) is the formal d
e = A
©201x Heung-No Lee o 46




Some Decoding Examples

%+ Double error correction using (7, 3) RS codes capable of correcting ¢ =
2 errors. (Again with the Berlekamp-Massey algorithm)

©201x Heung-No Lee 47
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\W % \O
“ The key equatign /}\ o | A 3
A®S )k Qx) mod x* A

is equivalent to
Qx)= O(x)x" + A()S(x)
for some O(x). Ty

2+ Thus, given A(x) and S(x); we may use the extended EA to
find Q(x) as well.

©201x Heung-No Lee 48




Summary

%> BCH and Reed Solomon codes have been used in many
applications.
— Cyclic codes, LFSR implementation.

% Reed Solomon codes achieve the Singleton bound.

* In the light of new decoding methods [Sudan, Guruswami,

Koetter, etc], Reed Solomon codes are again in the
research spot light.

©201x Heung-No Lee
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Term Project Idea 1

% Objective: Survey the literature with the objective of
finding out the state-of-the-arts in Reed-Solomon codes:
— Read IEEE Transactions on Information Theory papers
— New encoders and decoders

* Find and compare the maximum design distance D = 2¢, the
maximum block length n, the rate region k/n, etc. , each codec can
practically achieve today.

* What are the required complexity for each one (how fast the
algorithms are?)

» What are the target application areas for each?
» Come up with other relevant questions and answers.

©201x Heung-No Lee
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Term Project Idea 2

e
s

Objective: Show the possibility of using RS codes in a Compressive
Sensing system.

@,

c3

4 Use an (n>128, k, D>6) Reed Solomon codec in MATLAB. (or
whatever programs available in the Internet, MATLAB, or the
textbook)

— Push nand D as large as possible.

— Note we need a low rate k/# codes (Compression)

5

» Use it as a Compressive Sensing system
— Obtain a reasonable size picture, say a GIST logo, from the Internet.

b

— Compressively sense the picture using the RS code.
“# Compare its performance with the standard CS approaches

— Use a known CS approach (visit the L; magic web-site or the RICE
University web-site and download the relevant MATLAB program
package)

©201x Heung-No Lee
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HW#4

% Moon: P6.1, P6.2, P6.6, P6.11, P6.12, P6.14
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Convelutional Codes

Ref: Moon Ch. 12, Wicker Ch. 11, 12
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Agenda

@,

< Brief History of Convolutional Codes

— Peter Elias [1955], introduction of C codes, instead of block codes, and list decoding,
instead of unique decoding.

— Sequential decoding algorithms in the 60s [ Wozencraft, Massey’s majority logic,
Fano, ...]

— Forney’s dissertation, RS code + C code [1965], later adapted in Voyager 1[1977]

Convolutional Code, What is it?
— Feedforward form
— Feedback form

Maximum Likelihood Sequence Detection
— Tree Search, Trellis Search (Viterbi Decoding)

% State Diagram, Distance Spectrum, Performance Evaluation

< HWH#5
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Voyager 1’s current location [2007]
[Wiki2010]

Flroaser 10 IS
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Memoir of Gallager on Peter Elias
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Convolutional Codes

+ Code words are generated by c(D) = m(D)g(D)

— D is one unit delay of a shift register circuit

— g(D) is realized with a linear finite-state shift register

— The degree of m(D) can be infinite. So can be that of c(D).
“» Rate k/n code, (k, n, K) CC

— k information bits get shifted in at each D,

— goes thru K units of delay, (K is called the constraint length)

" — generates n coded bits output at each delay

k bits |E>

n bits
\%- cr O .
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Convolution (FIR)
mD)=1 K=3

00001— D

+ D

g(D) = 1+D*+D?

| D

000001101 <(D)=gD)

«> From systems class, we know the convolution is
— Shifting the input sequence
— Multiplying the shifted input term by term with the filter coefficients
— Add up the product terms
— Shift the input sequence by one and repeat

“» Here the input and the filter coefficients are binary and the summation
is module 2 addition

© 200x Heung-No Lee

Feedforward Rate 1/2 convolutional encoder

c(D)
P ’ O
U(D) _@tJ ‘><__

(D)

“» g(D)~1+D+D?, and g,(D)=1+D?

“ G(D) = [g(D) g,(D)]

“» Consider input U(D) = 1+D?

< C(D) = [g,(D)UD) g,(D)UD)] =[1+D+D3+D* 1+D*]
“ C=[11,10,00, 10, 11]
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Feedback Circuit (IIR)

u(k) »i(k) \y(k)

—®D Nv) —®D p—
E E] m Direct Form II
D X D)
T
E Transposed
N Form

(= k- Dby (k2 +uk) = Y(D)=UD)/(1-D-D?)
= (k) = () + 3, (k-2) = Y(D)=Y,(D)(1+D?)
& Y(D)y~U(D)(1+D?)/(1-D-D?)

© 200x Heung-No Lee

Recursive Rate 1/2 Convolutional Encoder

U (D) Cy(D)o

!
E—’ c0)©

< G(D)=[1 (1+D3/(1+ D+ D?)]
# Consider input U’ (D)=(1+D?)(1+D+D?)=1+D+D*+D*
» C(D)= U (D), Cy(D) = (1+D?)? = 1+D*
% C=[11,10,00,10,11]
<+ For U’(D) = U(D)(1+D+D?),
U (DYG(Dy=U(D)G(D)
% G°(D) and G(D) are equivalent; they generate the same codewords.
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State Diagram of Rate 2 Code

0
N\

¢,(D)
U(D) L ‘IE" K_

¢)(D)

\/

“* State can be defined as an ordered set (Memoryl,
Memory2) = 00, 01,10,11

“+ The state diagram | 1L ’

00,

10
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Soft Decoding

“y=x+n, x=2c-1, and let N = length of binary vector u.

*# One-to-one: u, ¢, and x
“» Consider likelihood function p(y|x=x,), i=0, 1, ..., 2V -
plylx=x;) = p(n= a X;) 1
= @ g3 - )T Ry Yy — %))
< Assume white noise such thatR_ = c,21,,
where 6,2 =Ny/(2E,)

© 200x Heung-No Lee
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Soft Decoding (2)

1 :
Soopyxk=x) = Ceapl—s o0y —x) ! (y - %))
n
1 N-1 5
= C - exp|l— Yi — Ty
1 [ 205 jgo 'JJ 1]! ]

T

This term is what matters

Common

constant for all

hypothesis x;
. , N SN=1
< log p(ylx;) = —C, 'Lj:ol 'y;] - l'7j|2

where C, is positive

© 200x Heung-No Lee

Soft Decoding (3)

<+ Thus, we have

i arg mazy,cy p(y|u;)
arg mazy;ex p(Y|x;)

= argmazy,ecx log p(y|x;)

N-1
= argmingex Y, |yj—x..,:j|2
7=0

Euclidean distance
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Hard Decision Decoding

e

+ When we only have hard decision r available, we can
obtain

a

arg mazyey p(riu;)
arg maze,ec p(rlc;)

arg maze,ec dy(r,c)

N-1
= arg ming,cc z wrr(rj — cij5)
7=0
Hamming Distance
16
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Tree Decoding

The node metric at the starting node a is zero.
2. Expand the tree, resulting in two branches for one node.

At each branch, calculate the distance (Hamming or
Euclidean) with the corresponding received symbol. This
is called the branch metric.

4. Add the branch metric to the node-metric. The result
forms so-called the cumulative metric. Record the
cumulative metric at the node and use it for its offspring
paths, in the subsequent tree expansion.

17
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Tree Decoding

00 a
2 4)
00 a
2
1y
OI )
a
. 1 00~ input I 0
| 10 ¢ T ) )
1 M00 b a, b, ¢, d denotes the states
01 s Us by
R o . F\ (00), (10), (01), (1)
o1 d 00— \
1 (1)1_0— d o4 \
- L

The same structure
11 11 11 11
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Tree Decoding

Observation: The same tree structure repeats after 37 expansion

“ Consider the cumulative metrics of the two merged paths at node-a,
such that a-a-a-a and a-b-c-a. Let’s call them (1) and c(2)

Let’s assume another tree search decoder spawning out of node-a
starting from the 4-th expansion, and an optimal path a-x-y-z-... with
minimal metric path of length (V-3) can be found.

%+ Thus, the overall minimum of the two metrics associated with the two
paths, a-a-a-a-x-y-z... and a-b-c-a-x-y-z..., can be determined by o(1)
and o(2).

<+ This indicates that when some paths merge to a same state, an early
pruning decision can be made without loss of optimality.

‘» After pruning, the decoding on a tree can be done on a collapsed tree, a
trellis.

© 200x Heung-No Lee




Trellis Decoding

Received 11 11 11 11 01 10
00 (2) 00 (4) 00 (1) 00 (2) 00 (3) o0 3)
o — O 8% % % %
\\1\1 \\]l \\]\1 \\]\1 \\]\1 \\1]
0 N
\\\ \&\ 5 Q\ \\\ \\ X\
N N 2, SO T AN\ EETRYA NI \\g
\ \ ) \ D\ 00 .
\ \ O,OQ \ ,Oox \ \ e
Y\ v )0 v T\U0 v " \Uo 10
NN N QN v 3)
\ \ 01 01 ol )
\01 } \ \
X purged AN \ \ \

Decided sequence is
11 10 11 11 01 10
Flip coin when tie

20
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Viterbi Algorithm

The algorithm shown is the Viterbi algorithm.
Note that the number of states is 2Nm,
The number of branches is 2Nm * 1,

Let o(j, k) be the partial cumulative metric at state j at the k-th trellis
section.

Set o(j=a,0)=0 (Starting at the state a).

At time k, compute the partial cumulative metrics for all paths
merging to each state.

Set o(j, k) equal to the best partial path metric entering the node
corresponding to state-j at time £. Break a tie with coin-flipping. Mark
the best metric path.

At the end of sequence, trace back the marked path for decoding.

21
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Travelling Salesman Problem

“# Given a list of cities and their pairwise distances, the
problem is to determine the shortest distance trip route in
which each city is visited. (1930)

<* An NP-complete problem.

— Currently many heuristic algorithms are out there, and problems
with 10 thousands cities can be solved.

22
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Continuous Viterbi Algorithm

<+ Making decision at the end of the sequence is optimal in
the sense of MLSE:

— Delay
— Memory requirement to store the survivor path metrics

“* Early decision reduces delay and memory requirement.

“» In practice, decisions are made earlier than the end of the
sequence.

“* The delay required to make this early decision is called the
traceback depth Nbp.

<+ If we make No= N, the length of the sequence, the decision
is optimal.

“» If we make Nbp too small, the decisions will not be reliable.

23
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Traceback Depth (Moving Window)

k-th

/\ survivors

purged

Np

Exploration depth

At the k-th exploration depth, start to make
decision on symbols at the (k - N, )-th epoch
that is stored in the current best survivor path

24
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Traceback Depth

Looking at the contents of the survivors after exploring k time epochs

At k-N, and further back in history,
Survivors (Input—(u, U, ; Uy, -..)) it is highly likely to see a merge in survivors.

101100000001010101011111000001101
101110010001010011011111000001101
010100001001010000011111000001101
101000100001010111011111000001101

< >

Np Good traceback depth can be determined with

Viterbi search of minimum free distance

25
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Catastrophic Convolutional Codes

“» With a catastrophic convolutional code, a small error in the
received code word can cause an unlimited number of
errors.

“» When does it happen? How do we know ahead of time?

»» State diagram contains a loop with non-zero input which
generates all zero outputs.

26
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Examples from Wicker

Figure a

Figure b

27
© 200x Heung-No Lee




IFF Condition for Non-Catastrophic

“» A rate 1/n code C is not catastrophic IFF

— GCD of all the constituent generator polynomials is equal to D/ for
some non negative integer /.

“» Example of Figure b,
— GO=D+D?+D?3, G'=1+D+D?
— GCD(G®, GW) = 1+D+D? = D/

28
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Graphs and Weight Enumerators

“» Weight enumerator is the generating function of an
encoder graph

“» Obtain a state transition graph, starting from the all zero
initial state and ending at the all zero final state

«* These states are the same states defined in the state
diagram

» We are interested in listing out all possible paths such that
the state transition can possibly take, departing from the
all-zero state and re-merging back to the all-zero state

“» The label of branch records the weight of the output and
the weight of the input

29
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Example

%’;W} State Seq. Se S; S; S¢ Sy S
¥ ﬁ}‘éw N N
e g Input 1 1 0 0 0
oy’ X+ m‘%‘,.«g% Output 11 10 11 01 11
x/x A~/ Branch Weights XY XY X? X X2

. ", XY ¥y o~ T . 82

o # otal Weights XY
! Some Definitions:
i Loop, Forward Loop (starting at S)

Nontouching loops (no common state)

30
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Transfer Function of State Diagram

< Consider the feedforward rate 2 code in Lecture-9 again

Exi)a, b, c a; W3Z1L3

* codeword weigths is 5

* Input weights is 1

« Length of this path is 3
Ex2)a, b, d d dc a; W3Z'L®

31
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Transfer Function

“» Compute weight distributions for all possible state
transitions from a, to a,

** Define accumulated path label x;, which is an accumulation
of all branch label from the initial state to i, as influenced
by all other nodes

© 200x Heung-No Lee

Transfer Function from Simultaneous Equations

“# Let x; denote the accumulated path labels of the node-i starting from
the initial state as influenced by all others

% x,=A+Dx,
x, = Cx, +Fx,
x;= Bx, + Ex,
X, = Gx,

ACG(1-E)+ABFG

Yae = T_E_D(C-CE+YBF)

<» We call this the transfer function
T(W,Z,L) =x, T2 D= " pc—ce+p)
_WZLW' LWL (\-WZL)+ W' Z' LWZLWLW L
\=WZL - ZL(WL -WLWZL + WZLWL)
W3Z'B(-WZL)+W°Z* L'
T wzL—war

ACG(1-E)+ ABFG

33
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Input/Output Weight Enumeration Function
(IOWEF)

W Z'P(1-wzL)+wez* I
\-wZL-wzl

T(W,Z,L)=

WL LWL +(WZD =W+
1-WZL-WZL) WL+ 2w L
-WZ'C+WZ* L+ Wz
WL -wezr
wezZ L -w'z’ L -w'z’ I

)(W’Z3 W)L+ W 2L

+* We can let L. = 1 for IOWEF.

© 200x Heung-No Lee

34

Transition Matrix

«* In matrix notation, we have x = Tx + x, where x = (x,, x,, X, X,.),
Xo=(A,0,0,0),and T =

0
C
B
0

Qo cocU

00
FO
EO
00
e x=Tx+x, = x=(1-T)x,
x=[+T+T2+T3+...]x,

*» This tells us about the weights of all the error events
“+ Get x, by multiplying withe, :=(00 0 1)

X, = €,X

35
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L3 Error Events

< ACG = (W2ZL)(WL)(W2L) = W3ZL3 is the accumulated
path label
i x,= e, X+ e,Tx, + e, T?x,=

=0+e,(0D0 0Y(A)+ e (CDOFDOY A
CoFolflo FBCDFE 0 || 0
BO EO| o0 EBBDEE 0 || 0
0G0 0J o GO0 FG 0| 0

=0+0+AGC

© 200x Heung-No Lee

L? Error Events

% ABFG = (W2ZL)(WZL)(WL)(W2L) = W6Z2L*

e T3 = DFB CD?> DFE 0
C2D+FEB FBD CFD+FE? 0

BCD+E2B EBD BFD+E3 0

GCD GFE 0

'/’}Z;'& e4T3XO = AGFB

© 200x Heung-No Lee




L> Error Events

“» Two paths: ABEFG +ACDCG = W7Z3L5 + W6Z2L>
“ ¢,T*,= ABEFG + ACDCG

38
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Weights of All Possible Error Events

“ Thus, e,x=¢, [I+T+T?+T3+...]x,
=¢, [T2+T°+...]x,
<+ This describes the weight distribution of the error events,
arranged in different lengths.
“» The free distance and error rate can be obtained from this.

<> The free distance here is obtained from L3 term.

— The weight of the codeword is 5, the exponent of W, which
corresponds to 1 bit error, the exponent of Z (Why? — the weigths
of higher order terms are greater than 5.)

39
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Minimum Free Distance d,,

<+ Most frequent decoding errors are due to wrong decisions made in
favor of the nearest neighbors of the transmitted codeword.
— These are undetected errors because these neighbors are valid codewords.
— Correct codewords are eliminated.
*%» The minimum Hamming distance between all pairs of convolutional
code words
dje. - =min{d(c’, )| ¢’ # ¢}
=min{w(c=c’-¢’’)| ¢ =0} linear code
*» Thus, we can determine d;.. by assuming all-zero sequence as the

transmitted codeword, and finding out the weights of neighboring
allowed sequences

“ Thus, increasing dg,.. at a particular constraint length is a desired
design criterion (Wicker 11.3: maximal mimimum free distance codes).

— One idea of the trellis code is to use Euclidean distance -- instead of the
Hamming distance.

40
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Minimum Free Distance d,,,

*» Assumption: all-zero codeword was transmitted
+» Find the distance of an error path from the all-zero word

41
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Determining d,,,, with Viterbi Algorithm

+ Consider a single sequence departed from the all-zero path.
» Run the Viterbi algorithm on all the resulting sequences of this single
sequence.
Compute the Hamming distance of the path from the all-zero
codeword.
— The accumulated path metric is the Hamming weight of all the codeword
bits along the path.
+ After running it for a while, find out the best path among the survivors
— There is one survivor per state. The survivor at the zero-th state is the
minimum metric path. (Why?)
“+ Not always is a path remerged in the shortest length the ., path.

— In other words, it is possible to see that the weight of a path re-merged at a
length greater than the shortest merged path is smaller than the weight of
the shortest path (Will see this in HW).

42
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Traceback Depth

Traceback Depth (TD)?: TD is a number of delay units. After a delay
by the amount of TD, the first decoded bit from the Viterbi decoder
becomes available.

How to set the TD right?

— One approach is explore the trellis starting from the all-zero path. Ata
certain depth of exploration, all accumulated metrics of survivors will
become larger than the free distance. We can set this depth as the
traceback depth.

— Viterbi decoding with a depth set larger than this traceback depth gives
small improvement.

— The other approach is to set the TD to be “7 times the constraint length.”
This is a heuristic design rule of thumb.

> Will see this in HW.

43
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Determining dy,,, with Transfer Function

“» Evaluate the transfer function wrt W (let Z=1, L=1).
— Use the transfer function in previous example

 Note A=W?, B=W, C=W, D=1, E=W, F=W, G=W?

WO WO 46 w>
, . . . —
T(W , 7 = 1 L = 1) = l—VV—I’V‘{‘LV?_WQ - 1-2W

Use (25 =14+D+D>+D3+. ..

% We have T(W) = W3 (1+2W+4W2+8W3+ )
=(WH+ 2W6 +4W7 + 8 W8+ ..,
— 1 weight five path, 2 weight six paths, 4 weight seven paths, ...

44
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Erroneous Decision

<+ Let’s assume all-zero codeword was transmitted

<+ Noise was so strong that it caused some of bits flipped

Received 10 i 10 00
00

Cost of this erroneous decision is
1 information bit

How many bits, need to be flipped
for this erroneous event to occur?

Do location of errors matter?

45
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Erroneous Decision (2)

“# Transmitted codeword = (00 00 00 00 00 ...)

<» Received codeword = (1011 100000 ...)
* Sequence of dg,, =(11101100 00 ...), the nearest

neighbor
ﬁ Need to pay attention on these positions

Don’t need to pay attention on this coordinate because the codeword

bit is also zero (same as the all-zero codeword)
» Whether it is flipped or not will not make a distinction in
making a comparison with the all-zero codeword

46

© 200x Heung-No Lee

Erroneous Decision (BSC)

» Let’s assume all-zero codeword was transmitted
- Noise was strong in some coordinates that it caused some

of bits flipped
Received {0 i {0 00
00 (1) 00 @oo ) 00

’ Costs of this erroneous decision is

1 information bit

S

How many bits, need to be flipped
for this erroneous event to occur?

Do location of errors matter?
47
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Erroneous Decision (2) (BSC)

¢ Transmitted codeword = (00 00 00 00 00 ...)
» Received codeword =(i1011100000...)
“ Sequence of dg., =(1110110000 ...), the nearest

neighbor ‘ ‘p ‘

Need to pay attention on these positions

Don’t need to pay attention on this coordinate because the codeword
bit is also zero (same as all-zero’s)
* Whether it is flipped or not will not make a distinction in
making a comparison with the all-zero codeword

48
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The Probability of Making Erroneous Decision
(BSC)

“» What is the probability of receiving a non-zero codeword
with the required number of bits (three or more in our
previous example) flipped on those critical coordinates?

++ This is called the pairwise error probability (a pair between
the error path and the all-zero one)

49
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Performance Analysis

> An error path leaves the all-zeros path, say at node S,, re-enters the node once
with smaller partial accumulated path metric than that of the all-zero path

Pairwise erroneous events are not disjoint. The underlying assumption of the
union bound is that the pairwise error events are disjoint events.

«<* The node error probability P.(S,) at node S, is the probability of the union of
all such pairwise error events

© 200x Heung-No Lee

Union Bound

* A pairwise error event E: Given all-zero sequence, ML decoder makes
a decision in favor of a different path which departed from the all-zero
path at S,, and re-merged to it once at a later time.

“+ Consider all individual pairwise error (PE) events {£} that are possible
from the node S, and treat them as if they are disjoint events.

> Sum up all the PE probabilities.

SHPNRED NP (PP VAP SN .

Erroneous path survives,

\ eliminating the-all-zero-—
sequence

51
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Basic Fact in Probability

< Pr{A UB} =Pr{A} + Pr{A°N B}

< Pr{A} + Pr{B}

52
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Union Bound (2)

< Let {E,, E,, ..., E} be a collection of all the possible

erroneous events, the probability of the union of events is
less than or equal to the sum of individual probabilities
P(E),j=1,2, ...

»Pr(E,UE,U ... UE,) <Pr(E,) + Pr(E)) + ... + Pr(E,)
“ Each E, denotes a particular pairwise error event

“» Using this bound, we can say

&,

* P(S,) < Xec ¢p Prir: p(ric) > p(r|0)}

where C, is the set of all possible error paths diverged at S,
from, and re-merged to, the all-zero path only once.

«» We call Pr{r: p(r|c) > p(r|0)} the pairwise error

probability

53
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Union Bound (3)

“ P(S,)) £ 2 ca Pr{r: p(rie) > p(r(0)}
= 2g=114 Py
where
— d = weight(c),
— n,is the number of paths with weight d,
— P, :=Pr{r: p(r|c) > p(r|0), w(c)=d}
=Pr{r: [T p(r|1)/p(r,|0) > 1}
“» Now let’s focus more on the pairwise error probability P,
with weight d.

54
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Indicator Function

“X:Q—R
. __{1 X>0
{X>6} -7 o X <6
«%* Taking expectation
“ E{lix>g) =1 *Pr{X>8} + 0*Pr{X< 5}

55
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Chernoff Bound

“ LetX:QQ =R

< We are interested in approximating the tail pdf of X, such
that Pr{X > a}, for the interval (a, co)

“* Note that Iy . ,, < e"®- for any real b>0

On this domain, upper bound it with
something larger than 1 for x>a

/

And, here with something > 0

"
———

0

» Taking the expectation on both sides
“ E{lixsq ) =Pr{X>a} < E{ePX-9} =ePaE{e} for any
real b>0
— We can find the optimal b that achieves the equality closely

© 200x Heung-No Lee
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Pairwise Error Probability P, with weight d

 For a path with weight d, we have
P, = Pr{r: [Ty p(t) 1/p(j0) > 1}
+«* Now consider the following (construct Chernoff bound)

I{r’=(r1...rd): p(j|1)/p(rjl0)> 1, for all j=1,...,d] 0}
< TIT; (p(11)/p(5;{0))* Lo, .. ra 0y

(r;, 1,) : entire surface

© 200x Heung-No Lee

{(r), r): p(r;{1)/p(r;|0)=> 1}

57




Pairwise Error Probability P, with weight d (2)

«» Taking the expectation on both sides
“ LHS =Py
“ RHS = Z(rl,r2, ....rd) Hj p(I‘J'O) (p(rJI 1)/p(I'J‘0))S
= 2ataa, .eay L P13 /p(r0)1
«* Thus, we have
Py < j=1dzrj p(r;|1)® /P(rjlo)l's
«* The best s which minimizes RHS and thus, making RHS as
close as possible to LHS, can be found.

> When the channel is symmetric (AWGN, BSC, ...), the
best s = %2. The bound with s=1/2 is called the
Bhattacharyya bound.

58
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Bhattacharya Bound on Pairwise Error Prob.

“Lete=(001001...)has dnon-zero coordinates

> Comparing ¢ with all-zero codeword, and considering the
event that metric of ¢ is favorable than all-zero codeword

«* Need to consider only the d non-zero coordinates
“ Py < Ty [ Pl D2 /p(r)0) 2] = Q¢
where Q = [2; p(r;|1)"”? /p(1;|0)'?]
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Union Bound (4)

@ PAS,) < Yee ca Pri{r: p(rjc) > p(r|0)}
=: Y4=114 Py

“* Note n,—the number of paths with weight d — can be
readily obtained from evaluating the transfer function at
T(W)=T(W, Z=1, L=1)

*» Note that T(W) has the form
T(W)=n, W+n, W2 +n; W3 + ...

<+ Finally, the probability of error at node a is

P(S,) < 2ymimy Q4= T(W)ly—q

60
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T(W, Z, L=1) for bit error probability P

“ T(W,2)=n;;WZ +n,, WZ2 +n, ;WZ3 +.. +n;;WZi + ...
o OTOVE) = 0 \WZ42 0y ,WZ2+3n, ;W23 +.. +in ,WiZi + ...
e STORD))| )= (0 +20, 430, ) WH (L)W +(..) Wi
= b, W+b,W2+b,W3+. .
where {b,} are the total number of nonzero information
bits associated with codeword of weight i

< Thus, the average number of bit error rate

19T (W, 7
P, < E“‘*La—z‘—lhfv:Q,Z:l
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Union Bound BER equation

P, =1/k E[b]
=1/k 2., b, P;
< 1k [0 T(W,Z2)/0Z]w=q, 7-1
“* For each trellis-section, £ information bits are
transmitted

o bj denotes the number of information bits in error,
associated with codeword of weight j

*+ P, 1s the pairwise error probability of weight i

62
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Approximation of P,

“* Obtaining the transfer function is difficult, thus often P, is
approximated by considering the paths whose weights are

dfree

Py~ tbg, QPfree

free

“» Where by, is the number of non-zero information bits
associated with the codewords of weight d,..
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Q for Binary Symmetric Channel

“ Q= [, p(rl DM /p(r|0)2] = 21/(1 — p)p
** Note that r; =0 or 1

% When ;= 1, p(1|)"2p(1]0)"2 = /(- — p)p
“ When ;= 0, p(0]1)!p(0[0)"> =, /p(1 — p)
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Exact Pairwise Error Probability for BSC

2 P4 = Pr{half or more bits in d-coordinates are in error}

< ML decoding makes erroneous decision,
— For d odd, (d+1)/2 or more bits must be in error
* Ex) Ford=5, 3,4 or5 bit-flips are needed
— For d even, (d/2)+1 more bits must be in error

* Ex) For d=6, 4 or 5 bit-flips are needed. When 3 bit-flips, with
probability %2, ML decoding will make a wrong decision
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Performance over AWGN

Y; =VEsX; T, =1,2,...,
» For a particular pairwise error event with weight d:

— For hard decision decoding, Hamming distance of 1 is counted
when x=-1 for codeword bit 0 was sent but received was > 0.

— For soft-decision decoding, it will be a different story for soft-
decision decoding

By=Es- 5

Info. bits 511 VEs
SN - '
encoder 0 -1 ’—@‘_‘ VA
AWGN ~ MO0, 62=No/2)

© 200x Heung-No Lee
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Performance over AWGN (2)

» Recall from Lecture-9, the ML soft-decision metric is
ST _ D
2 ly; =% (Use Eg =1 for simplicity)
— We can use the absolute value for metric
“» Note what happens when using this Euclidean distance,
instead of the Hamming distance

i % 09 DR RIS 0112 00 .« .

. L3 aa @ 1 G Under hard decision
- - : — Decoding, all zero

path gets eliminated

Under soft-decision
decoding, the
erroneous path gets
eliminated
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Performance over AWGN (3)

<+ On those d non-zero coordinates (d=5 in our example), find out the
probability of a particular receive signal y; with which the likelihood

of all-zero path is smaller than that of non-zero one

» Sincey; is Gaussian with mean = -1 and variance c,*

“ Py =Pr{ Z|y; — x(error-path) [> < X |y; — x;(all-zero)[*}
= Pr{Z,. 4 y; -1P - Iy;+1P) <0}
=Pr{2%y;> 0}

P Y= ijld y;» each y; are iid Gaussianrv’s

% Gaussian is defined completely with mean and variance

@ B(Y)=Z, By = d* (1) =-d

* Var(Y) =24 Var(y;) = d*c,?
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Performance over AWGN (3)
% Let’s use 6,2 =N_/2 and an arbitrary E,, then we have
1 oo _lutdVES2
Py=Pr(Y >0) = g Jo e Mo dy
2dEg
= Q(
where Q(z) 1= 2= [ 2dt x>0
69
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Finally, the upper bound on BER over AWGN

Make use of a bound Q@(vVz +y) < Q(Vz)e ¥/2

[2dEs
Fo = QG/7™)

— Q( ’,Q(I‘f.r“,Es + ((] - df?‘F'PES
\/ Ny No

_No
(2 recBsy —(a=d g B No

No
— dfr‘rtl /\OQ(\/dfl)\(‘;E“) (I] /\4[, ::

No

)

“» Finally, the BER is

N, 2d ... F
Pb g %edf'r’eeES/l\’oQ(\/ free 5)()T(VL Z)IM _

No ,—ES/NU Z 1
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Genie-Aid Lower Bound on BER over AWGN

~» For a lower bound, let’s assume an unrealistic scenario in
which a magic genie provides the receiver two codewords
from which the receiver makes a decision, one is the actual
transmitted codeword and the other a codeword with dg,
distance away from it

1 1 2d E
Py > Py, = Q=)
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Tables of Good Conv. Codes

[Moon506]

The program £ inddfree finds dge for a given set of connection coefficients. It has
been used to check these results. (Currently implemented only for & = 1 codes.)

R = 1/21251,197] R =T1/3[351, 1671
L g® g® diee L g g@ B g
35 7 3 375 7 7 g
4 64 74 6 4 54 64 74 10
s 46 72 7 5 52 66 76 12
6 65 57 8 6 47 53 75 13
7 554 744 10 7 554 64 764 15
8 712 476 10 8 452 662 756 16
9 561 753 12 9 557 663 711 18
10 4734 6624 12 10 4474 5724 7154 20
11 462 1542 14 11 4726 5562 6312 22
12 4335 5723 15 12 4767 5723 6265 24
13 42554 17304 16 13 42554 43364 77304 24
14 43572 56246 16 14 43512 73542 76266 26
15 56721 61713 18 '
16 447254 627324 19
17 716502 514576 20
72
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Tables of Good Conv. Codes
[Moon507]
R =273 (254, 172]
R =T/4 351,197 ST S
L gV @ B @ g L v g®D @Y OV die
2 2 6 2 3 3
35 7 7 7 10 . . o
4 54 64 64 74 13 -
5 52 56 66 7% 16 33 f ﬁ f’, ¢
6 53 67 7 75 18 s 4 7 X . s
7 sS4 S64 63 714 20 ) s .
8 472 572 626 736 22
9 463 535 133 M5 24 4 3 f‘; ig :’,3 6
10 4474 5724 7154 1254 27 4 6 6 0 6 ;
11 4656 4726 5562 6372 29 % o by
12 4767 5723 6265 7455 3 s 7 & 2 “ ¢
13 44624 S2374 66754 73534 33 9 o oy
14 42226 46372 73256 73276 36 s 8 6 9 5 8
26 66 44
6 9 %2 06 74 9
05 70 53
6 10 63 15 46 10
32 65 61
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Tables of Good Conv. Codes

[Moon507]
R'="3/4 (254, 172]
(L1 1B L0 08
g(2,1) 3{23’) 8{2,3) g(2,4)

L v g&b 232 LB LB g
3 3E q 4 4 4
O 6 2 4
0 2 5 5
3 53 6 2 2 6 5
1 6 0 7
0 2 5 5
3 6 6 1 0 7 6
3 4 1 6
2 3 7 4
4 8 70 30 20 40 7
‘14 50 00 54
04 10 74 40
4 9 40 14 34 60 8
04 64 20 70
34 00 60 64

Table 12.2 presents a comparison of diree for systematic and nonsystematic codes (with
polynomial generators), showing that nonsystematic codes have generally better distance 74
profiatleRestitd we even more pronounced for longer constraint lengths.

Other Subjects on Convolutional Codes

2 Punctured Convolutional Codes

<* Suboptimal Decoding Algorithms
— M algorithm
— T algorithm
— Fano algorithm

75
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Summary

“» Convolutional codes have been one of the very successful
codes.

<» MLSD decoder has been available since Viterbi[67].

“ Large d,, codes have been found and tabulated.

«» Concatenation of Reed Solomon code and Convolutional
code [Forney’s dissertation 1965]
— Voyager [1977]

%+ Still used in many communications systems
— Cell phones, space crafts, telecom/broadcasting systems

“» They are also used as a component in Trellis Codes, Turbo
Codes, LDPC Codes, ...
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HW #5

% #1. (Moon 12.6, 12.7,12.12, 12.23)

%> #2. Draw the rate %2 recursive convolution encoder defined by G(D) =[ 1
(1+D+D?+D3)/(1+D+D?3)], and obtain its state diagram

#3. Consider the rate %2 feedforward convolutional encoder given in the lecture,
and assume the soft decoding channel model defined in the lecture —y = x +
n, where x=2¢-1 and n is AWGN with E(n"n) being a diagonal matrix.
Suppose y =(0.9 0.5,0.20.1,0.2 0.3,0.2 0.1, -1.0 0.1, 0.9 -0.2). Use the
soft-decoding Viterbi Algorithm on the trellis, and find the maximum
likelihood codeword. Compare your result with the one obtained using hard
decision decoding metric in the lecture.
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HW #5

#4. Consider a rate 'z feedforward convolutional encoder defined by
G(D)=[1+D+D? 1+D+D%+D3].

— Obtain its state diagram.

— Draw a completed trellis-section that defines the the encoder.

— Find the free minimum distance by running Viterbi algorithm on your trellis. (Hint:
Start with a single path that departs from the all-zero path. Use the procedure—
determining dg,, with VA—described in the lecture. Show your working of VA on
the trellis, as was given in lecture.

— Based on your results, determine the traceback depth

#5. Calculate the union bounds for upper and lower bounds of the rate 2
encoder, G(D)=[1+D+D? 1+D?], whose transfer function was obtained in
Lecture. Obtain performance curve graphs for soft- and hard-decision bounds.
Compare them with the uncoded case.
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Trellis Codes

Ref: Ungerboeck’s 1982 paper

©2002 Heung-no Lee Fall-02 University of Pittsburgh
Gottfried Ungerboeck
[Wiki]

“» Born 15 March 1940
“+ Austrian Communications Engineer.

> Ungerboeck received an electrical engineering degree
(with emphasis on telecommunications) from Vienna
University of Technology in 1964, and a Ph.D. from the
Swiss Federal Institute of Technology, Zurich, in 1970.

“» He joined IBM Austria as a systems engineer in 1965, and
the IBM Zurich Research Laboratory in 1967.

*» Ungerboeck joined Broadcom in 1998 as Technical
Director for Communication Systems Research.
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Channel Coding with Modulation (Trellis Codes)

<> What was proposed?

— New coding technique to improve detection performance without
increasing the bandwidth or sacrificing the data rate.
— Joint channel coding and modulation.
> How?

— Design convolutional (trellis) codes which increase the free

Euclidean distance, instead of increasing the free Hamming
distance.

“» Benefits?

— Achieves coding gain of 3-4 dB with simple codes for 8§ PSK and
16 QAM modulations.

©2002 Heung-no Lee Fall-02 University of Pittsburgh 3

A Little Bit of Review on Modulation Theory
(From EE 1473)

“» BPSK system

1101
i—‘—rL;_ [ L] Jan|H pec lo-
A T B
I To ! g ¢ Effective BW ~ 1/T by pulse shaping
1/T
BSC
A B
———7.._—
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QAM signals

(QASK in Ungerboeck)

“» cos and sin are orthogonal to each other. Thus, two
independent channels

JJ—‘—L [] 1],
T
1011 2
sin 21;f t ;
J—\—l—L'_ IR g () .
T
©2002 Heung-no Lee Fall-02 University of Pittsburgh 5
1-D/2-D Signal Constellation
~ sin
BPSK sin
Hamming = Euclidean p
16-QAM
VEs
Py ’ ®— COS | 4bits/symbol |
0 —@® ® ® P
........ ‘ ‘ ‘ ‘._
4ASK
2 bits/symbol >
..... ‘ ‘ ' ', cos
yEs cos
o 0
00 10 11 or  _ P ® -
AR A I
For multi-level signals, Hamming # Euclidean in general
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How to provide room for redundancy?

1 sec

—_—>

“» Increase the bandwidth

Information 3bits/sec
bitrate ] Rate 1/3code ———

of 1 bits/sec

*» Or, decrease the data rate

Information 1bits/sec
hitrate ] Rate 1/3code ————
of 1/3 bits/sec

©2002 Heung-no Lee Fall-02 University of Pittsburgh 7

Or, use Trellis Codes

“» Trellis codes increase the size of signal constellation to
create room for redundancy
— Example) QPSK = 8 PSK

8 PSK

2 bits/sec 3 bits/sec

“» Anything that we are loosing?
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d,;, 1s smaller

“ d_;, 1s critical in determining the symbol error probability
(or BER) for uncoded transmission (why?)

-« For a bigger signal set with equal average symbol energy,
d,;, should be smaller.

<» Thus, in order for Trellis code to work, the benefit from
coding should surpass the loss of having smallerd ;= d’

d = VEs - 2sin(r/8)

dmin = V2Es

©2002 Heung-no Lee Fall-02 University of Pittsburgh 9

Design Criteria

Eey

> Design a trellis structure that maximizes the free Euclidean distance dg,.,

— For convolutional codes, codes which maximize the Hamming d¢,., were desired
% Ungerboeck noticed what ultimately matters is the Euclidean dg,, of
transmitted symbol sequences {x;}, because they determines the detection
performance

received X

modulation

Minimum Free But, actually the minimum free
Hamming distance was Euclidean distance should be
maximized for maximized (Ungerboeck’s Design
convolution codes Criterion)

©2002 Heung-no Lee Fall-02 University of Pittsburgh 10




Coded Transmission vs. Uncoded

«» Signal constellation {a, b, c, d}
% Uncoded transmission
— Transmitted sequence:abcadbcecdad...
— Symbols are chosen independently at each epoch
— If N = length of the sequence, 4N possible sequences
— Minimum distance between transmitted sequences = minimum
distance in signal constellation
* Coded transmission
— Transmitted sequence:abddccb. ..,
— Symbols are chosen dependently upon previous symbols in the
sequence.
— IfN = length of the sequence, only 4N&M possible sequences.
— Dependency means the increase in minimum distance between
sequences
©2002 Heung-no Lee Fall-02 University of Pittsburgh 11

Thus, we could both loose and gain

<+ We get smaller d’ by going for bigger constellation.

<+ But, we will eventually get bigger gain by having
increased dg., of the trellis-coded transmitted sequence.

“» Thus, the gain should be (dg.)*/(d,;,)? -

“» Note that for a fair comparison we should fix the
transmitted powers of both uncoded and coded cases to be
the same

— Or use a compensation factor E’/E where E;’ is the average
symbol energy with coding and E; is that without coding.

* Thus, we can define an overall gain factor
Y= (dzfreeEs)/(dzminEs,)

©2002 Heung-no Lee Fall-02 University of Pittsburgh 12




How to Introduce Redundancy

*+ Create some dependency rule

— Current symbol is dependent upon a few past symbols in the
sequence
— The few past symbols constitute a state

moving window

Current symbol is dependent upon past three
and current input bits

“» We can make use of trellis structure (or a state-diagram)
for this.

©2002 Heung-no Lee Fall-02 University of Pittsburgh 13

Signal Constellations

. CIEE
& fi]

i e RSN W

R & @ # #
P
R S A B~ PSE
e s Se S

& = &M % ES PSS

@ 5 w ombw o

e 4 # miu 9

k-3 £ E BEE B

R L B BRI o R

- AR
R Ed e i Bl
Petslats 6} sel el
EIE fmw iy
TP R PR W}X&wﬁ "3 & = fé
i # GoHE % 2 m
i = i LR B beact Fichd
I N i e MR
B BT % - DAEE
{a} im

Fig., 1. Chanpd-signal sets considered in this paper, (1) One-dimensional
modulation. (b Two-dimensional modudation,
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Constraint Channel Capacity

“» Analysis of constraint channel coding capacity shows that
we only need to double the size of signal constellation to
get the most benefit

— QPSK = 8 PSK
— QPSK =16 PSK, a significant diminishing return

“* The input constraint: only symbols from a finite alphabet

are allowed
— Thus, the capacity is bounded

— Constellation with 8 symbols = the maximum capacity is 3 bits
per channel symbol

©2002 Heung-no Lee Fall-02 University of Pittsburgh 15

Channel Capacity Analysis

2 bits/T achievable
around at SNR =10.0 dB

o e

If go for 8 PSK but send
only 2 bits/sec, error free
T - trans. is achievable at SNR

BTN - =59dB
By going for
o / unconstrained, we could

11 gain only 1.2 dB. Thus,

most benefit is obtained
from going for the twice
bigger constellation

[V - | E BlE B e g e -
& 2 9 & & 2 %4 i s 23 27 2% 28 28 30 lan)
by
Fig,. 2. Chanoel capacity <% of bandlimited AWGHN channcls with
discrete-valued input and continucus-valued output. ) One-dimensional
modulation. b} Two-dimensiconal modulation.
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Before examples, let’s consider

Take 4 PSK as reference uncoded system, and use 8 PSK for coded system
The goal is to maximize the min. free ED of the resulting sequences

< Construct a state machine that gives out a symbol from 8 PSK constellation
(three coded bits) with two input bits at a single encoding step

Note in this example, y=(dg..)?/2, since the energy per symbol is 1 for both

0.765 = 2sin(n/8)

©2002 Heung-no Lee Fall-02 University of Pittsburgh 17

Set Partitioning and Idea Behind

w
o
=
%
Fu
#
-
o
&7
<
T
S
o
ok
3%

L3
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L
-
-
t.
-
v
W
&

o T G g
. JT R

L
i
&

3 ¥ f % 2 :
{;l] L CEE - @ 5 Ea @ o L

@Ot Hof ot o mos wom s e B0

Fig, 4. Partitioning of §-PSK channel signals into subxem wnh mf.waw
ing minirum subsel distances (8, < &, < 45 E{la; |} =
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Observation

%+ As going deeper into the partitioning, the minimum distance within a
partition increases

— When an early decision should be méde, it would be desirable to make one
within a deeper partition, as much as possible

— For example, conditioning upon an event that CO has occurred, we only
need to make a decision between the most separated signal points 0 and 4
whose distance is 2.0

2 Now, what about the the likelihood of occurrence of a subset Ci?

— These can be assigned to states in trellis such that we can deal with the
sequence of partitioned subsets C1 CO C2 C3 ..., instead of symbols

% The more the number of states is, the larger free distance but the more
difficult in decoding

< So, let’s start with a small trellis-state example

©2002 Heung-no Lee Fall-02 University of Pittsburgh 19

1 Trellis State

<» With one state, we cannot afford to create a coded
sequence

— Atevery trellis-section we have four merged paths, and thus, we
must make four decisions—which is the same for uncoded 4 PSK
modulation

1 TRELLIS STATE

dires * B4 ppgx = 1318,

Priel 2 & Qldgge’iw)

Fig. 6. Uncoded 4-PSK modulation, 2 bit /7'

Eg EET SEE e
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2 Trellis States

With 2 states, some coding benefit can be achieved, but parallel transitions are required
Consider the first state, we need to make four transitions thus need four signals—say 0,4,2,6

Assign the maximally separated symbols on parallel transitions, such as 0-4, 2-6, 1-5 and 3-7

— Similarly for the second state, use signals 1,5,3,7 (Entropy—use signals equally often)
(dpree)>= d2(0,2)+d%(0,1)=2.0+(0.765)*2=2.586
Y= (dgree)*/2.0 = 2.586/2.0 = 1.293 = 1.1 dB SNR gain

2 TRELL!S STATES

r—-——ww“kwr
Ojrgp® [&F+ 45 7 1608
{11 6B GAIN OVER 4 -PSK),
° Priel z2 Gldy, f2el
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4 Trellis States

% (dgee)* = d%(0,4)=4.0
2 v=4.0/20 = 3.0 dB SNR gain
“+ Parallel transition was choice, why it was used here?

4 THELLIS STATES

e c2 >

ﬁﬂ %’2 oo G gy .

€1 €3 g / dppp * B =2.000
TETT ow s 2 o

L S (3.0 dB GAIN OVER 4-PSK),
160 4 gy g , ;
Priel 2 1.00d,,,, /260,

3T15 g %
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8 Trellis States

8 THELLIS BYAYES

D428
153
4036
547
260
371
624
T35

B A R I

{36 4B GAIN OVER 4-PSK).
Prig) & 2.0 pran/2a).

E - - I B

£

* (dio)?*=d%(0,6)+d%(0,7)+d2(0,6) =2+(0.765)*+2=4.568

+ y=4.856/2=2.293

= 3.6 dB SNR gain
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16 Trellis States
16 TRELLIS STATES
G428 Gt ke pr——y
1537 2w fa  dyge =i8I+alesle] = 20M
4 G832 2 & 2 o )
5173 o of o (41dB GAIN OVER 4-BSK},
2804 = P Priel 30 g/ 20l
g 2490 ] Fa &
Ta3E 9 & fo 5
406 3 CIEES @
5173 [} -] |
Ba46 k] 4 i
1537 @ @ =
8240 * o &
Ta81 ko] @
2BOA <3 Ed 3
3715 o LY 3 ] EY
Fig. 7. Coded 8-PSK modulation, 2 hit/T.
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16-QAM

AQ # 16-0ASK
LR N
”.!~ w e Bg w2 G = 0832
sene
y°=a s a8 ]
80 _— ~ SUBSET B9
s 000 s®0 -
shae sade” by {ioag
s 90 B - 2
] oED N 2080
3 } \
co ¥ Y N ez e Y N3
soma 6000 aeoe 6000
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so8y av o0 sepe oo!o“ 22424
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GONG HOOD OEPD OLTS VOGOO COOL COEO '0\60
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Fig, 5. Partitioning of 16-QASK channel signals into sszé;ets' with increasing minimum subset distances {4, < 4, < 4, < Ay
Ela;} =1
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8 Trellis States

& TRELLIS STATES

Oy, Dhg Dy g, [ R 1 € .
H
Hepn® &
Dy Dy Dy Iy 4 ® % ey
o p A AR GAIN OVEH RB- AP
8,050 02 SO ® lnagp GaN OVER §-PSK
Yd
D04 By Dy . & P oPrigi 2 (VM. ek
"1
By Dy Dy 0y o
D 03Dy By § ¢ *
g D2y By @ (2
& =3

[0 B
Fig. 8 Coded 16-QASK modulation, 3 bit/ 7T
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16 Trellis States

16 TRELLIS STATES

G426 e L ey
185357 o el z Girpp =87 +EL 8y #8] = 2 274
062 [ & 2 o
; 173 S a ? ) {61 dB GalN OVER 4-PSK).
g 3 ? '; : g Prietz (3% jree/ 20},
6240 ] @ ©
T35 o o o
4082 2 4 6 @
Bi173 & L] @
G428 ] & o
P 537 X o3 @
6§20 L ] @
7381 5] ]
FEO4 o a ]
Fig. 7. Coded 8-PSK modulation, 2 bit/T.
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Dominant Factors in Determining Free Distance

=» “Parallel transitions”

o« e & e

<+ “adjacent transitions”,
(dfree)2 = dz(aab) +.F dz(C,d)
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Ungerboeck’s Heuristic Rules

»» For a given number of states, we are looking for a trellis
which gives maximum free Euclidean distance

* Rule#1: Signals are used equally often

“» Rule#2: Parallel transitions are assigned to the members of
the same partition

“* Rule #3: Adjacent transitions are assigned to the members
of the next larger partition

©2002 Heung-no Lee Fall-02 University of Pittsburgh 29

How Far Can We Take This?

2+ Partitioning one dimensional signal sets results in
minimum subset distances d;,; =2 d;.

“+ Partitioning two dimensional signal sets results in
minimum subset distances d,,; = sqrt(2) d; .

< Partitioning a large signal set, after a few partitions, gives a
minimum subset distance that exceeds the free ED that one
can ever expect.

<+ It is sufficient to partition only two or three times.
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Codes for 8 PSK Modulation

()

TABLE T
Copgs rog 8-PSK Mopination

“* As complexity increases (as

. A R L R A
the number of trellis states e
increases), the coding gain is S e
Z E: it G2 3 &3 kR 3
larger, but with a limit. e 2w s w w b
“» For example, trellis code Lo e
4 k4 363 @36 229 3006 A%
with the 27 states, the gain O 5.0
factor is 5.0 dB; with 2° Bor e mam e
s k3 z 1087 alss fod g 3.7 37
States, 1t’s 57 dB T2 w am em 3748 5.7
— Recall the capacity results 1 - b Suril
GBS w T, 2 IKSE) » 2utain/d), LR
sydapsg =y s, 080 - 2
*Sezrch net completed.
&N improvement oblained,
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Obtaining an Encoder From the Trellis

% So far, we have been concerned only with the design of a trellis that
gives maximum free ED

“» Now, let’s think about how to realize the trellis with a state machine

< First, we need a mapping rule that assigns coded bits to the channel
signals
— We may use the natural mapping rule, such that 0->(000), 1->(001),
2-5(010), 3>(011), 4>(100), 5>(101), 6->(110), 7->(111), for 8 PSK
example
— Note that these are just a naming convention (different names can do the
job as well.)
<+ Now, we can find the binary state machine (binary convolutional
encoder) that does the job,
— It takes some effort but is do-able.

©2002 Heung-no Lee Fall-02 University of Pittsburgh 32




Obtaining an Encoder From the Trellis (2)

< A state machine produces an output (coded bits) due to a
set of input bits (information bits) and the current state
(memory), and jumps to a successor state.

“ Let’s use a convention like this

— The four transitions from the top to bottom are due to input (00),
(01), (10), (11).

— The Ungerboeck’s mapping (natural mapping) is used for naming
the 8 PSK signals.

*+ Based on this, one could come up with a state transition
table.

— Let’s take an example of the 4 trellis states code

©2002 Heung-no Lee Fall-02 University of Pittsburgh 33

4 Trellis State Example
Current Input Output Next

m, m, xDx®  y@ yy© mym,
: 00 00 000 00
“ ABinary 00 01 100 00
representation of the 4 00 10 010 01
state Trellis Code 00 I 110 01
- 01 00 001 10
4 TRELLIS BTATES 01 01 101 10
2 01 10 011 11
W {; 01 11 111 11
4:‘1 cs "% ? 10 00 010 00
TEIT Oauiip 10 01 110 00
) P 10 10 000 01
2604 o 10 11 100 01
3T 18 11 00 011 10
11 01 111 10
11 10 001 11
11 11 101 11

©2002 Heung-no Lee Fall-02 University of Pittsburgh 34




4 Trellis-States Example (2)

«» First, give names to the trellis

— I just chose the natural
mapping for names of states x2
and branches

<+ After constructing the table,
look for governing relationships,

1
from the current state and the x® l m
input, to the output, and to the L=
next state.
< Note the following can be
obtained from the table ©)
— YO =x@ y
— Input x() becomes next state’s
m,, and the current state’s m,;
becomes the next state’s m,
— y(l) = X(l) + m2
— yO=m,
©2002 Heung-no Lee Fall-02 University of Pittsburgh 35
Other Examples in the Paper
x(m)
Choose
4 A signal >
51304 k+1 - ..
o x(rD s In partition Out
" 1L
= | Rateki(k+1) » Select
s C d Signal
) onv. encoder >
x( Partition
No parallel transitions = no upper
part (the selected partition has a
single channel signal)
Fig, 9 Reshiration of 3-PSK and 16-QABK cosdes by wapss of minimal
convolitional eacodess,
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Viterbi Algorithm

We already know how to perform Viterbi algorithm on trellis, except
how to handle the parallel transition.

&

On branches where you have parallel transitions, we first need to make
a pruning decision among the parallel transitions, and then make
another pruning decision among the paths merged

Yk

Min1=min{ly; — Sol% IYx — S4*}s
Min2=min{lyx — S2/% ¥k — Sel*}

Make the final decision among
the two paths, in favor of the
path having the minimum
metric, min{Minl, Min2}
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4 Trellis-States Example (2)

++ First, give names to each
elements in the trellis

— Natural mapping for states and

branches x(2) y(2) Select
. . a symbol
s After constructing the table, within the
look for governing partition
relationships, from the current x(D

state and input, to the output,
and to the next state

<+ Note the following can be Select
obtained from the table zé partition
- YO =x@ i

— Input x() becomes next state’s
m,, and the current state’s m,
becomes the next state’s m,

— y(l) =x1) + m,
- yO=m,
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4 Trellis-States Example (3)

Current Input Output Next

mz ml X(l) y(l) y(o) mz ml
< x(@ =y@ does not make
any influence on the 00 0 Co 00
y 00 1 c, 01
output of the 01 0 c, 10
convolutional encoder 01 1 C, 11
. 0
<+ Thus, a trellis can be 1o G, 00
btained b uds 10 1 C, 01
obtained by excluding . 0 c, L0
the two 11 I C, 11
CO, C2
Cp. Cs
C,, Cy
C39 C1
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Two Types of Distances

“ The minimum squared distance within the partition assigned to the
parallel transitions (the single signal error event)
— This is d? 4 = 4.0 for the example of four-states coded 8 PSK
<+ The minimum free distance of sequences of partition sets
— The squared distances of any pair of partitions are d*(C,, C,)=d*(0,1)
=0.585, d%(C,, C,) = d%(0,2)=2.0, and d*(C,, C;) = 0.585
— @ quence = 4(Cy, C+dA(Cy, C)+A(Cy, C,) = 4.585 > 4.0
K dzfree = min{dzparellela d }24'0

sequence
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Other Examples in the Paper

X(m)
Choose
: Asignal [ >
k+1 s na
- s In partition Out
T
- Rate k/(k+1) g.fllectl
(1y = |Conv.encoder igna
X Partition

No parallel transitions = no top
part (the selected partition has a
single channel signal)

» Example is the 8 state 8§ PSK
Fig. 9, Realization of #-PSK ard 16-QOASK codes by mouns of minim

ennvolistinsal encoders. code
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Another Way of Obtaining an Encoder,
From the Trellis

<+ Obtain the generator polynomial G(D) directly from the
trellis by using the fact that G(D) is simply a collection of
impulse responses

x(=1 xW=0 xD=0
e, S o -G oM
C o & o

10 C,\'/IO

#* Thus, G(D) =[1 + D?, D] for y( and y© respectively
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BER for BPSK

>y, = sqrt(E)) x, + n,, where x, € {-1, 1} with equally likely

_§y+vEs)2
Pr(y, > Olzg, = —1) = / 2No/2) dy
,/27r(No/2
= / ~~~~~ delz
V2E:Ng \/—
= Q(Y2Es/No) = Q(dp/y /2No)
“ Q) L oo ‘%Q“dt >0
& ) = = | e , xr
v 37 I vz E, = Es-(1/Rc)
dg =2VE;

R, = rate of the code

—® ©— = number of bits
0| .
each baud carries
©2002 Heung-no Lee Fall-02 University of Pittsburgh 43

The Complementary Error Function vs. Q(x)

©erfe(z) =2 e
» Q) = zerfe(Fs)

%<* MATLAB only defines the complementary error function
erfc(x)
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BER for 4 PSK

<+ We can treat this system as having two independent BPSK
systems, one on sine and the other on cosine carrier

+» Thus, the BER for 4 PSK is exactly the same as that for
BPSK system

<> HW#6, Problem #3 is now solved
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Approximation of Uncoded Symbol Error Prob. P(e)

Ny
S P(e) ~ 1 erfc( m7n J— me( gz}\:?, )

<» Where d_;, is the minimum ED of the constellation and
Nymin 1S the average number of minimum distance events

per signal point q

<+ Example: 16-QAM signal constellation i
— Ngmn= (4%2 +8%3 + 4%4)/16 =3 R
(] o @ (=)
< Need to convertd, . in terms of average
® @ ] =]
energy of the signals for P(e) vs. SNR
(<] =] @ €]
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Performance Analysis (Approximation) of
Trellis Code Over AWGN

At high SNR, the following approximations are good
¢+ For the node error probability

PENN(dePP)Q( fé?{,so )
* Where N(dg.) is the number of sequences that are distance dg,, from
the transmitted sequence.
% For the bit error probability

bd ZJ5
Py~ —FeQ( fQA )

« Where by, is the total number of information bit errors in the
erroneous path with distance dg,.., m is the number of bits per trellis-
section, and E; is the average energy of signal
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Rayleigh Fading Channel

> Now consider TCM signals over the following channel

X. .
Y —— TCM [—) e > T
nlf

“» The fading g; is a complex-valued Gaussian—real and
imaginary parts are zero mean, variance of y?> and mutually
independent real valued Gaussian r.v.s

% Let r:=|a, Rayleigh distribution f{r) := (r/y2)exp(-r%/2y?)
** Note that y2/N, is an average channel SNR
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An Error Event involving L branches

< Consider the following one-to-one mappings, starting from
the input bit sequence

u=U,u,, ...) > X X,Xy, ...) 2Yy=. Y2 ---)

<» Now consider an error event in which u is the transmitted
input bit sequence but the receiver makes a decision in
favor of w’, which has corresponding x’ and y’

+* By making an assumption that there are L different
symbols between x and x’, the squared Euclidean distance
between the two sequences y and y’ observed at the
receiver is

A’ = |ly -y’ = [la™x —a™|? = X oy [x; — %)

=Y L2 g2 :

=1 Ui squared ED bctween two symbols in
K/—/ the i-th coordinate in difference
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Pairwise Error Event

de=ly -yl

P(e) = Q(dp/sqrt(2Ny))
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Pairwise Error Probability
(the channel a is known)

@ Pr(a 2> w’| a) = Q(dg/sqrt(2N))

QUEFH) < QUYEe/2,

and Q(0) =1/2

<
What only matters is the
energy of the fading channel,
Instantaneous SNR when the channel is known.
©2002 Heung-no Lee Fall-02 University of Pittsburgh 51

Probability of Pairwise Error

“ Pr{u> w} = [ Pr(u>u] ") f(r) dr

/ 1 ﬁ 12 > 5
= = : ——€lp( —~7< /297 )dr;
.r27.v___1 4N
1 L /'OG r ¥ 242
= 5 ]I —sexp(— ~a + oy )dr
2= fr=07? 2 2
1 L 2d2 _
= 510+ 2N[)
i=1
1 L ,.),2 p ,),2 2
~ ST when% 51 | ie. high avg. SNR
211:]1 2Ng 2N,

For high avg. SNR, P(e) ~ avg.SNRT
Thus, we want to have a large L
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Design Criteria for Trellis Code over Fading
Channel

“» L is called a effective length. It is the number of symbols
that are different in a pair of sequences
+» The first design criterion of Trellis Codes for fading
channel is the maximization of the minimum effective
code length L in the trellis
— P(e) ~ SNR asymptotically
+» The secondary criterion is to maximize the product of the L
distance terms
— Spread the distances as evenly as possible among the L locations
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Developments of Trellis Codes

<» Summary of good techniques is given in

— Introduction to Trellis-Coded Modulation with Applications (1991)
by Ezio Biglieri, D. Divsalar, P. McLane, M.K. Simon.

— Multi-dimensional (Lattice) Trellis Codes
— Multiple Trellis Coded Modulation

“» Extension of the Trellis Code idea to MIMO channels
— Space-Time Trellis Codes, by Tarokh, Calderbank, Seshadri, 1998.
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Summary

«+ Trellis codes provide coding gain without sacrificing the
transmission rate nor the bandwidth.

“» They are called Coded Modulation.
— Channel coding and modulation are done in a joint manner

— Code design should be done in a way to increase the Euclidean
distance, rather than the Hamming distance, for AWGN case.

— But for fading channel, it’s Hamming distance (minimum free
distance) again which is more desirable as diversity becomes more
important, rather than Euclidean distance.

«+ Trellis Codes are very useful for spectrum limited
applications such as terrestrial communications, personal
area networks, wireless LANSs.
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HW set for Trellis Codes

> Problem #1: Design a rate-2 8 PSK four trellis-states code
without any parallel transitions
— Find the free ED of your code
— Compare it with that of the best 4 trellis states code
<» Problem #2: Reproduce the Channel Capacity results
(Fig.2 in Ungerboeck’s paper) for m-ary PSK signals (m=2,
4,8, 16): (Submit the MATLAB program for this, along
with your results)
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Computer Simulation Assignment
(use MATLAB)

> Refer to Wicker pg. 386 or Fig. 16 of Ungerboeck’s paper

Simulate the uncoded 4 PSK system over the AWGN channel

— ¥, =X, + n, where {n,} is complex-valued white Gaussian noise process
and x, is the 4 PSK signals, {ei™4, ei37/4 ei5n4 eiTn/d}

— Use a gray mapping such as {(00), (01), (11), (10)} for the four signals
— Obtain the theoretical bit error probability vs. (E,/No) SNR curves

— Obtain bit error rates from simulation and compare them with the
theoretical curve (Obtain at least 100 errors; for example for bit error rate
of 103 you should at least generate 100*1000 bits)

# Simulate the 8 state 8 PSK Ungerboeck Trellis Codes for the purpose
of generating BER curves, and compare them with the BER curves
obtained from the uncoded 4 PSK system

— Use the Ungerboeck mapping for 8 PSK signals
— Use the Viterbi algorithm for decoding
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Review on Linear Code

“»Galois-Field (p),
— A set with addition and multiplication operations
— Closure, Associativity, Identity, Inverses & Commutativity
* With mult. only non-zero elements

“*Vector space with p" elements on GF(p)
— Cardinality of a code with rate R, |C = gR”
% @, generator matrix [nR x n] of a code
—Row-space of G is space of the code
“+H, parity check matrix [n(1-R) x n]
—n(1-R) rows, [n x 1], of H span the null space of the code
+GH" =0
% Results in n(1-R) number of linear homogeneous parity check equations.
SrH? = (cte)H" =eH! = s
—Non-zero s indicates “problem”

Fall-04 University of Pittsburgh 2

Gallager’s Thesis (‘63)

% (m, ], k) low density parity check code.
¢ Parity check matrix H [n(1-R) x n] of the code

— J, number of 1’s in each column

%,

— k, number of 1’s in each row
- R=1-jk
Min. distance of typical (n, j, k) code for j > 3,
— increases linearly with # for fixed j & & (Pg. 7; Ch. 2)
Upper bound on prob. of error for BSC with ML Decoding (Ch. 3)
— P(e) exponentially-decaying func. of block length n, when R <<'1
% Practical decoding (Ch. 4)
— Simple or probabilistic
*» Generalization (Ch. 5)

W,
4«@%

B,
O

&

Fall-04 University of Pittsburgh 3




Parity Check Matrix on Bipartite Graph

100100100
0100100710 5
00100100 1| |s
10001000 1)
010001100 | Ls
001 10001 0"

Fall-04 University of Pittsburgh

Ilustration of Decoding Concept with
Simple Hard-Decision Decoder

«* Works only for BSC
— ris binary sequence
+» Compute all parity checks

% Change the digit involved in more than a fixed number of
unsatisfied parity checks

«* Re-compute all parity checks
“ Repeat
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Simple Decoding Example (j=2, k=3)

< Suppose we have
r=[100000000]

% Violates check nodes
(equations) 1 and 4

<» Check nodes 1 and 4
send back to error-
pattern nodes an
instruction to correct

*» Error-node 1 corrects it,
having two instructions

*» Error-nodes 4, 5,7 & 9
do not correct, since it
has only one instruction
to correct

Fall-04 University of Pittsburgh 6

Probabilistic Decoding

<+ Bayes’ Theorem on The Total Probability
¢ Total Probability: If A={A,, A,, ..., A} is a partition of S
and B is an arbitrary event
Pr{B} =2"_Pr{B N A;} = 2X"_,Pr{B | A;} Pr{A;}
% Bayes’ Theorem: We know
Pr{Ain B}

Pr{A;|B} = PriB]

+» The aposteriori probability is then given by

Pr(B|A;)Pr(A4;)
Pr(AqB) = -
A1</——A2 \>A“ A = o e (Blay Pr(ay)
aposteriori prior
Fall-04 University of Pittsburgh 7




Gallager’s Decoding Principle

% A posteriori probability: Pr(zg = 1]y, S)
— Event S: All participating check equations are satisfied.
— Event {y}: Observed output of the channel.

< First, let us think about a codeword in a sub-code.

— A sub-code is a collection of codewords which satisfy all the j parity
checks.

— Each of the j parity check equations involves (k-1) bit nodes.
— Note a codeword in this sub-code is comprised of j*(k-1)+1 bit nodes.

— A codeword ¢ = (a;d‘a?(:}l, a:(lb, - 7:17‘11'k——1.( e :Eﬁll., x;().lzg ceey :lek 1)
_______ k—1terms T r-1iterms
k-17C O
bit-nodes--- ™ N\-emono.
J check eqn’S\j x (1Y) p
Fall-04 Uni\g’rsity of Pittsburgh 8

Gallager’s Decoding (2)

%+ Assumption 1: Digits x,, X4;, ... are independent

“ Assumption 2: y=(Y4, Y15 ¥2» ---» Yji-1)) @nd independent
channel transition probability

Pr(y) = Pe(yq) Pe(y1) - - P-F(yj(k—l))

Fall-04 University of Pittsburgh 9




Gallager’s Lemma 4-1

< Assume m-independent binary digits (x,, X,, ..., X,,)
< Assume (p;, p,, ---» Pyy) available, denoting p/~Pr{x;= 1}
* Then we have Pr(z1®a0® ...0xm=1)
= Pr{even number of 1's}
_1+TI0%, (3 -2p)
2

< Hint: consider the two following functions, add/subtract
for even/odd number of 1’s, then selectt =1
M2y ((A=pD)Ep ) = i=1(1—p) £ 2 1T (1-
pi)t+ - £ (1 —pp) [0 + 1120 P

Ex) m even
Fall-04 University of Pittsburgh 10
Gallager’s Decoding Theorem 4.1
% Bayes Theorem:
Pr(zy=1,y,5)
Pr(ag=1ly,8) = ——"4— 20277
a=1 p(y.S)
_ Pr(Slzy = 1,y) p(zq=1,y)
p(y,S)
Pr(Slzqg = 1,y) Pr(zq = 1ly) p(y)

»(y. S)

%+ The ratio is of our interest

PT(.’E({ - O'Y* S) — P’I‘(S]{lfd = 0*)’) P'I‘(ilfd = OIY)
PT("”d = 1va S) PT(‘glel =1y) P"'(xd = lly)
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Gallagar’s Decoding

% Find the probability that the first parity check equation is
satisfied, given x,; = 0 and the channel output y,
Pr0@aj &z, & ...®a) _ =0z;=0.y)
= Pr(even 1'sin the rest (k— 1) bit-nodes|y)

= Pr(all zero |y)+ Pr( two 1's |y) + -~

= P7'(;z:(1l1 = O..’I.'Cll2 =0.... ,!I,'Llik"'l =0|y)+
assuming Pr(zy, =lay, =1.....,a}  =0]y)+-
independence el g
= [[Q-Przj=1]y)+
=1
2 L k=1 Py =
H P"(Td[ =1ly) H (1- P‘l'(a:}ll =1lly)+---
=1 =3
_ THmE (-2
2
Fall-04 University of Pittsburgh 12

Gallager’s Decoding Theorem 4.1

« Now, find the probability that the first parity check
equation is satisfied, given x; = 1 and the channel output y,
Pr(l1s :(:(1,l &) ;1:{1[2 [ ) ”:<ltk_1 =0lzg=1,y)
= Pr(odd 1's in the rest (k— 1) bit-nodes|y)
= Pr(single 1 |y) + Pr( three I's |y) + -

Avai ) = P7~(;15[111=1,:L'(1i2=0,...,:1;‘],]k_1=0|y)—l—--~
gain, assuming 1 1.1 4.1 1 -
independence Prizg = Lug, = Lag, =1,....2q_, =0|y)+
k—1
= .P'/'(;I:}h:l[ y) H(l—P1'(:r(lll=1| )+
Showing only a (=2 )
single term 3 1 pu_=
of the same kind H Pr(%%, =1 ] y) H (1- P7'('J’cll, =1 Iy)) + ...
=1 =4
1-I21 0 - 2py)
2
N%e the negative sign
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Gallager’s Decoding Theorem 4.1

% Let S, : = {the i-th check is satisfied}
*% Then, S=S, and S, and ... and S;
¢ Thus, we have

Pr(Skeq = 0.y) Pr(Sileq = 0,y)

1
i

2

~

1 TR - 2py)
2

i

%+ Similarly, we have

i1 T1FC - 2
P’I'(Si;l?d = 1’y) = H Hl:lz( pi/)

=1

Fall-04 University of Pittsburgh 14

The Decoding Theorem 4.1

% Now summarizing the decoding theorem, we have the
equation (4.1)

Pr(zq =0y, S) 1—Przg=1y) ¢ 1+I21(1~2py)
Pr([l)d = 1]y, S) Pr(zy v= 1 y)’ 1'£Il 1-— ]‘[;‘__:%(1 — 2pi1)
pd =

_ l-pg LIS - 2m)

pa =1 1-TIE2H = 2py)

1=

% Note pyand p;, i=1, 2, ...,j,1=1, 2, ..., k-1 are posterior
probabilities of having digit “1” at the particular location
given the complete output y

pa = Pr(zg=1]y)
vy = P'r(:z;ﬁll =1]|y)
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Iterative Decoding

% We can consider the sub-code scenario for each of the
j*(k-1) first tier bit nodes '

*+» Now, we have (j - 1) check equations for each bit node
(why?)
— Each check equation checks (k — 1) bit nodes

J-1 check eqn’s RS

Fall-04 University of Pittsburgh 16

Iterative Decoding (2)

% Second or higher tier probability calculation

Pr(z} =0ly,S) 1= Pr(.xrél =1ly) J 1+ Hf_—:ll(l — 2py)
Pr(z} =1ly.5) Pr(zg, =1ly) = 1-I={(1—2py)
[ E————

P11 =
_ l-pu To14 wall(l — 2pi1)
P11 =2 1- Hl}‘ 1(1 2[);])

j-1terms

1
X 41

Fall-04 University of Pittsburgh 17




Iterative Decoding (3)

% Assume the probability calculation is started off from the
last tier of the tree, and coming down toward the first tier
of the tree

% After a number of second tier calculations — (j-1) check

equations and (4-1) bit nodes for each check — we assume
we are close to the origin of the tree, and make the first tier

calculation — j check equations with (%-1) bit nodes in
each (given by Theorem 4.1)

Fall-04 University of Pittsburgh

The Start of Iteration

%y, =VEs(2x,-1) + n,, where n, is AWGN for #=1, 2, ..., N

** Obtain the likelihood probability p(y, | X,)-

+%* This log likelihood probability is used to start the iteration.
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tanh and tanh! function

....................... ———— 1
“ Note tanh(%) = &7t V -
4 ....... _1

*» Note
1. 14z
tanh~YNz) = Zlo
(z) SlogT——
1. 14|z ; : >
= sign(x)=lo : :
sg()Q gl—[:(;l -1 §1
Fall-04 University of Pittsburgh 20

Hyperbolic Tangent, tanh

s 1—p;—p;
A X (1 _ 2p) — 4 1
' 1—p;i+pi
1 — P
_ 1-p;
— >
1+ 1—p;

1 & %n

log-ti_
14e1n

LR(p;
= —ta,nh,(—Q(p—z)

)

where we defined L, R(p;) := log ]_pip
—P:
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Log Ratio Algorithm

¢+ Take the log of the ratio of the posteriors

Pr(za=1ly,S) _ pd -+ Z 1-T1F23 (1 - 2py)
— - k—1
Pr(zg =0y, 5) i=1 1+H1:1(1—2pz‘z)

% Using tanh(3) = ﬁ , the summand of the second term

is J\

log———

[ 1-(-D)*~ 11-1?_1“”7}7(”2(;; 0 14-(— 1)’"]_[1 _____ lianh(—fL[R(p )
LO( y
J1+( IDLEER § b l,m,(w(mz)) 1 (_1)k 1tauh(M)

< Making use of tanh™1(z) = 1l0J1+a it becomes

Slm1 2 tanh= (= DF 12} tanh(EED)) Making use of

— : 1yprk=1,.. . LR(py)yytanh'! being
= Z{zl(—‘\l)]‘ 2 tanh 1(1’11:1 ta/u,h-(-—gi)——ﬁ odd function

Fall-04 University of Pittsburgh 22

Product of Real Numbers

@ Il a; = [[1; sign(ay)] - exp(L; log(|as]))
% ab=sign(a) sign(b) exp(log(jal)) exp(log(b]))

RS k—1 -
G Hl-:l tanh,(?_(g_ﬁ)

= 1=} sign(LR(pu))]-eap({Z] log(tanh (LGl

Fall-04 University of Pittsburgh 23




fix) = - log(tanh(x/2)) =log&t:

¢ Use the identity of product of real numbers to get rid of
product

J k—1 )
> (-1)k 2 tanh™( H t(mh(M))
i=1 =1 2
J k—1 k—1 -
= Y (=1)F[ 1 sign(LR(pi))]12 tanh™ [eap( 3 log(tc,mh(lil%m))]
i=1 =1 =1
Z 7 k-1 k—1
= >[I sign(LRaI- F71CY FULRMD))
i=1 (=1 (=1 .
— = \
Information generated L tio: inf
by the i-th check node 0g ratio: o
from bit nodes
Fall-04 University of Pittsburgh 24
=) = f(x)
% Symmetric wrt y=x
y=x
Fall-04 University of Pittsburgh 25




Finally, the Log Ratio Algorithm

¢+ Note the ratio here is Pr(x=1)/Pr(x=0), which is the inverse
of the ratio used in Gallagar’s thesis

«* With the following definitions

- LR(pg) :=logsEl- LR(py) := logzEL

/(. e 7 Pr(zg=1|Sy)
- LR(p)) = logm

%% Theorem 4.1 becomes

LR(p) = LR(p)+ S} [T}=7 sign(LRaNIFIS=1 FULR(pi))]

Fall-04 University of Pittsburgh 26

Number of Edges in Bipartite Graph

Pr(silxdzl 7y)

0O Pr(x=11Sy)

¢+ There are n bit nodes and L check equations
— Then there are E=n*j = L*k edges

— The total number of messages flowing from bit to check, and also
from check to bit, is £

Fall-04 University of Pittsburgh 27




Let’s Label the Edges

% Starting from the left of the graph

— For the edges connecting bit-1 to check-1 and check-4, let’s name
them to be ’11” and ’14” respectively

— For the edges connecting bit-2 to check-2 and check-5, let’s name
them to be *22° and *25’ respectively

— And so on
* Now, let’s define g,, the message from the bit-7 to check-/
<+ And, define r,, the message from the check-/ to bit-7

Fall-04 University of Pittsburgh 28

Likelihoods as Input

%y, = (2x,- 1) + n, where n, is AWGN for =1, 2, ..., n
where n, is M0, N/(2E,)) with E=E,*R

“» Obtain the likelihood function p(y,|x,)

%» The log likelihoods are used to start the iteration

¢ Let’s denote the likelihood functions
- fi(1)=p(y{x=1) and £(0) =p(y,|x,=0)
% The Log Ratio of Likelihood Probability is
LR(f;) =log(f(1) /f(0))=(4E/N,)y,

Fall-04 University of Pittsburgh 29




In the beginning, we have LLR(f})

LR(f,) LR(f,) LR(fy) LR(fy)
LR(f,) LR(f;) LR(fy) LR(f;) LR(f,)

< The log likelihood ratios (or {f(1)}) are the input to the
message passing decoder, to start the iterative decoding

Fall-04 University of Pittsburgh 30

Until the last iteration

% Do the second tier calculation

+ Each bit node generates ; bit-to-check messages

— Each bit-to-check message is generated by checking /-1 check
equations, excluding the check equation to which the message
flows

%* Each check node generates k check-to-bit messages

— Each check-to-bit message is generated by utilizing k-1 posteriors,
excluding the edge connecting to the bit node to which the
message flows

Fall-04 University of Pittsburgh 31




Bit-to-Check Message 91

Pr(xs=1[S.y)

LR(f,) LR(f) LR(fy) LR(fy)
LR(f)) LR(f) LR(fy) LR(f) LR(f,)

% The message to check node c,,
= 463(1):=Pr(xs=1|S5,y) = Pr(xs=1ly) Pr(Ss |xs=1,y) = f5(1) r¢5(1)
% The message to check node ¢,
= ges(1)=Pr(xs=1|S5,y) = Pr(xs=1]y) Pr(S; [x=1y) = fs(1) rg5(1)
Similarly for g¢;(0) and g,s(0)

In terms of log ratio, LR(qs;3) = LR(fs)+LR(r¢s) and LR(qgs) =
LR(fy)+LR(ry3)

G
E) 9'?

2,
!‘r@&
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Log Ratio Bit-to-Check Messages LR(g, ;)

LR(f,) LR(f,) LR(f,) LR(fy)
LR(f,) LR(f;) LR(f;) LR(f,) LR(f,)

% LR(qe3) = LR(f5)+LR(r4s5)
* LR(qg5) = LR(fg)+LR(rg3)

Fall-04 University of Pittsburgh 33




Check-to-Bit r,;

Pr(S; [x/~Ly)

%+ Check-to-Bit message is r;(1):=Pr(S;|x,~1,y), d=3, 6, 9
1—(1—2%3(1%)(1—2(193(1))

% The message (o bit node x; is r33(1) =
% The message to bit node x, is re3(1) = 1—(1_2q3§ﬂ%)(1~2q93(1))
» The message to bit node x, is ro3(1) = =(1=2033(1)(1=2p63(1))
*» Similarly for r (0) := Pr(S,|x,~0.y), d=3, 6, 9

— For example, r33(0) = 1+(l—2%3(0%)(1—2qgi(0))

Fall-04 University of Pittsburgh 34

Log Ratio Check-to-Bit Messages LR(7,))

‘¢ g(x) = tanh(-x/2)

«* The check-to-bit messages in log ratio
— LR(r33) = g~ [g(LR(g63)) - 9(LR(g93))]
— LR(re3) = g~ g(LR(g33)) - 9(LR(g93))]
— LR(ro3) = g~ g(LR(g33)) - g(LR(g93))]
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At the last iteration

LR(p,) LR(py) LR(ps) LR(ps)
LR(p,) LR(ps) LR(ps) LR(p,) LR(py)

¢ Do the first tier calculation (Theorem 4.1)
Pr(xs=1|S;,S5.y) = Pr(xs=1[y) Pr(S; [xg=1,y) Pr(5;
— pe(1) = f5(1) r5(1) 165(1)
= ps(0) = £6(0) r3(0) r45(0)
 LR(pg) = LR(fy) + LR(t;) + LR (1)

X6:1 9Y)

Fall-04 University of Pittsburgh 36

Parity Check Matrix on Bipartite Graph
(n=9, j=2, k=3) example

QI1(m,t): Row in a column

100100100
010010010 s (123456789
00100100 1|7 |s m=11123123123 7
I frooo 100 01|27 m=21456645564
01 000T1100f° S5
» loo110001 0"
L the number of checks Q2(m, I): Column in a row
l|123456
m=1{123123
m=2|456564 k
m=3|789978
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Summary of Decoding (Log Ratio)
(n, j, k) code with g(x) := tanh(-x/2)
*¢ Initialize:
- LR(fz):(4Es/NO)yp
— LR(r)=0,=1,2, ...,nand [=1,2,..., k
+ [teration:

— Bit-to-Check messages: LR(qt’Ql(m)t)), =12,....n;m=12, ...,J

LR(qt,Ql(m,t)) =LR(E) + X s LR(rt,Ql(m ',t))
— Check-to-Bit messages: LR(rqy(,.0.0)> =1,2,....L;m=1,2,.... k

LR(rqo(mn) = g 2 m g(LR@qz(mn )]
<> Output:
— LR(p) = LR(f) + Z,, LR(¥, g1,
+» Decision:
- if LR(p)>0 x,=1;elsex, =0

Fall-04 University of Pittsburgh
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Summary of Decoding (Log Ratio)
(n, j, k) code with f(x) := -log(tanh(x/2)) = log[(e*X + 1)/(e* -1)]

%+ Initialize:
— LR()=(4E/Ny)y,»
— LR(r,)=0,#=1,2, ...,nand [=1,2,..., k
+» Iteration:
— Bit-to-Check messages: LR(q; g (my)> =1,2,---, 13 m=1,2, ...,
LR(q, g1m) = LR(E) + X 2 LR 111
— Check-to-Bit messages: LR(er(m,,)’,), =1,2,....Lym=12,.... k
LR(I'Qz(m,/),/) =Ilvsm Sgn(LR(qQZ(rn ',1),/)) X fZ 2 m f(lLR(qQZ(m ',1),/)')] (-1)
<> Output:
— LR(p) = LR(£) + Z,, LR(t, 11,0
% Decision:
— if LR(p)>0 x,=1;elsex;,=0

Fall-04 University of Pittsburgh
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Generation of the H matrix

&,

¢ There are numerous ways to generate the H matrix

%* Any solution that satisfies the two constraints will do the
job (Some bad choice will increase the code rate)
. jnumber of ones in each column

2

k number of ones in each row

Fall-04 University of Pittsburgh 40

Using s-random interleaver to generate
the parity matrix H: (n, j=3, k=4) example

A A R
Seg2 1| 23 4 5 67 8§ ooo e
I

Seq-1 1/ 3/45 6 coo E2\E\1/E
C% O O OO0 O

‘% We know there are E=n*j = L*k edges
— Sequence each set of edges

— Find a random interleaved (e.g. s-random interleaver: s>k)
sequence T

(Seq-1)=(64E-1 ..)
Make the connections

Fall-04 University of Pittsburgh 41




Generate the H matrix directly

“» Randomly select the j row positions to place one in each

column, while making sure that the number of ones in that

particular row is not greater than £

% Equivalently, we can construct the Q1(m,t) matrix or

Q2(m,l) matrix

Fall-04 University of Pittsburgh
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Example with (n=9, j=2, k=3)

% Let’s generate Q1(m,t) matrix
— Rows={1,2,3,4,5,6}

“ At t=1, randomly select two numbers from Rows
— Suppose the two were 2, 5

< At t=2, select two numbers again from Rows
— Suppose they were 2, 4

% At t=3, select two numbers again from Rows

— Suppose it were 2, 3
— Remove 2’ from Rows

% At t=4, select two numbers from Rows-{2}
“» And so on

Fall-04 University of Pittsburgh
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Another Way

<+ Refer to Gallagar’s Thesis pg. 13 or his paper

Fall-04 University of Pittsburgh 44

Gaussian Elimination on H

% Once H is found, perform Gaussian Elimination on H and
find a systematic form of H, H,
— Keep track of the column exchanges made

“¢ Do the same set of column exchanges on H and obtain new
H matrix H__,,

<+ Find G using the relationship GH," = 0
< Use G, in encoding the data

% Design the message passing decoder according to H,,,
(Why?)
- GH,,,"=0

sTTnew
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Finally, we have

MessagePassing
Decoder with H, .,

s 2(x-1)

“* Noise is AWGN with mean 0 and variance N/(2E,)

Fall-04 University of Pittsburgh 46

Bit Error Rite

Results of the rate %2 LDPC code, N=4096

Try to obtain BER=105
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Turbeo Codes

©2002 Heung-No Lee

Agenda

¢ The Turbo Codes
** Forward-Backward Algorithm (BCJR algorithm)
% Soft Input Soft Output (SISO) Module
** Log Domain Algorithm
— The Max Operation
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Papers for turbo codes for class notes

% Bahl, Cocke, Jelinek, and Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” I'T, Mar. 1974.

%+ Berrou, Glavieux, and Thitimajshima, *

: > ,>ICC, 1993.

% Hagenauer, “Iterative decoding of binary block and convolutional
codes,” IT, Mar.1996.

% Benedetto and Montorsi, “Unveiling turbo codes: some results on
parallel concatenated coding schemes,” IT, Mar. 1996.

%> Benedetto and Montorsi, “Design of parallel concatenated
convolutional codes,” TC, May 1996.

¢ Benedetto, Divsalar, Montorsi and Pollara, “Serial concatenation of

interleaved codes: performance analysis, design, and iterative
decoding,” IT, May, 1998.

©2002 Heung-No Lee

Papers for Gallager codes for class

*,

% Qallager’s Thesis

<+ Richardson and Urbanke, “The capacity of low-density parity-check
codes under message-passing decoding,” IT, Feb. 2001.

% Richardson, Shokrollahi, and Urbanke, “Design of capacity

approaching LDPC codes,” IT, Feb. 2001.

% S.Y. Chung, T.J. Richardson, and R. Urbanke, "Ahalysis of Sum-
Product Decoding of Low-Density Parity-Check codes using a
Gaussian Approximation," IEEE Trans. on IT, Feb. 2001.

— Communication Letter: LDPC code 0.0045 dB of the Shannon limit.

%* Brink, S. Ten, "Convergence of iterative decoding," Electronics Letters,
1999.

s
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Term Project Idea

S

¢ Simulation

— A turbo transceiver system over AWGN channels or (MIMO) fading channels.
— Code design using the EXIT chart or Density Evolution.

— Papers helpful for this

+ Brink, Kramer, Ashikmin, “Design of low-density parity-check codes for modualtion and
detection,” TC, April, 2004.

< Some papers that are interesting for a summary presentation:
— Chen, Xu, Djurdjevic and Lin, “Near-Shannon-Limit Quasi-Cyclic LDPC codes,”
TC, July, 2004.
— Dijurdjevic, Xu, Abdel-Ghaffar, Lin, “A class of LDPC codes constructed based on
Reed-Solomon codes with two information symbols,” CL, July, 2003.
— Soft decision decoding of Reed-Solomon codes

« Guruswami and Sudan, “Improved decoding of Reed-Solomon and Algebraic-Geometry
codes,” IT, Sept., 1999.

= Koetter’s 2003 paper (Late UTUC prof)
+ Narayanan (Texas A&M)

5
©2002 Heung-No Lee
The Original Turbo Codes
< Berrou, Glavieux, and Thitimajshima, “Near Shannon limit error correcting
coding and decoding: Turbo Codes,” ICC 1993.
I X AWGN toedback loop
m]n G z,‘L Ao Aldn) e Wk
L Coe o721 16-STATE inter- 16-8TATE eadog
e L o e L] e
; o [
i
oo gt
DEMUY
INSERTION
faigine AWGN 9% Fordbackdecoder fuder 0lntrnal oy sssumptor) d
T porain sancataoaton. The notation given here will not be used further in

my lecture notes
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New Ingredients

*» New encoder —randomness reinforced with the use of
random interleaver
— Two state machines combined with a random interleaver
— The use of random interleaver dramatically increases the effective
constraint length of the overall code
“* New decoder — iterative decoding by exchanging soft-
metric among a number of state machines

— Local optimization using a Maximum A Posteriori (MAP)
algorithm

— Exchange the local optimization results among constituent
decoders across de-interleavers—iterative decoding

©2002 Heung-No Lee

Dramatic Performance Results

ginary )
Evear ¢ S S -
Rate

¢ The interleaver size was
65536.

+» Shannon Limit on rate 2
code is 0.187 dB (0 dB if
unconstrained).

“% The BER curves obtained
show P, = 10-> was achieved
at 0.7 dB, which is only about
0.513 dB away from the limit.

) 2 3 4 &5 Eb/No ©dB)
theoretical
Hrmit

Fig.5 Blnary errcs rate given by ltarstive decoding (p=1,....18)
of code ot fig, 2 rafe:1/2); ineviedying A56x256.

©2002 Heung-No Lee




Concatenated cod

Benedetto and Montorsi o Power Eificiency. BN, (dB)

Coding Achievements [Costello’98]

1998 (107 BER)

1603AM Beund

SPSK
5PSK Round

OPSK Round

Randwidih Efficiency, n (biis/signal}

BESK Bowads

30 100 120 4.6

220 [iX4]

WY

The Turbo Decoder

Takes the likelihood probability, on input being +1 or —1, sequence
from the sequence of received signals.

Generates a posteriori probability, on input being +1 or —1, at each of
the decoder assigned to a particular constituent encoder.

Note the following

Pr{X=+1|Y} = Pr{X=+1,Y}/p{Y} = p{Y|X=+1}Pr{X=+1}/p{Y}

Thus, the posterior can be generated by the product of likelihood and
the prior.

Get the priors from the other constituent decoders.

(This is the Basic Idea)

©2002 Heung-No Lee




Rate 1/3 Turbo Code Example

0 L,-L/ L, L,-Ly
Uy x0 [T y0 L
é) > s MAP-1 — MAP-2 T

[n]

2
D 2 B 2
% Xy 3 Yk

decision

©2002 Heung-No Lee

The Turbo Decoder (2)

** Now denote the following vector variables

— y°: the sequence (block) received for uncoded transmission

— yl: the received sequence for the first constituent conv. encoder

— y?: the received sequence for the second one

%+ Note that all of the three sequence contains useful information about
the transmitted information sequence u

- y'=Qu-1)+n°

— y!'=2fu)-1+n!

— y°=2f(mu)-1 + n? where f(*) denotes the encoding operation of the
recursive convolutional encoder on input sequence u or the interleaved mu
(one-to-one mapping)

% It is trivial to generate a soft metric on each input bit u, from the first
equation (i.e. the likelihood probability). But how about from the
second and the third equations? It is not trivial because of encoding
operation.
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Maximum A Posteriori Prob. On a Bit

“» We are interested in calculating Pr{u, = 1|y} or
Pr{u, = 0| y}, and choosing the bit which gives a bigger
measure
— Itis the MAP criterion based on the entire observation sequence y.

— Note that the maximum likelihood sequence detection (VA) is
also based upon the entire sequence.

©2002 Heung-No Lee

MAP vs. MLSD

% Note the following relationship bet MAP and MLSD:

Pr(u[y) = p(y, w)/p(y)
= p(y | wPr(u)/p(y)

< Usually we don’t need to consider p(y) because it’s the
same for all competing candidates.

< Thus, we have Pr(u | y) o< p(y | u) Pr(u).

— When Pr(u) equally likely, no prior information.

% In addition, if we know the entire sequence u, we know the

encoded sequence x. Thus, we have

Pr(u|y) =Pr(x[y) oc p(y|x)Pr(u)

©2002 Heung-No Lee




Sum Product Algorithm

“ Pr(u|y) =Pr(x|y) o< p(y | x)Pr(u)
* Now consider Pr(u, =1 | y)

Prup=1ly) o< > Pr(x|y)

Xiukzl

o< Y. p(yx)Pr(u)

Xup=1

< > Hp(yj |z;) Pr(u;)

X:up=1 J

©2002 Heung-No Lee

Consider our 1/3 turbo code example

Ly

For trellis termination
0 LO=L,-L Ly L, =Ly Ly’
uk ( L IS .
~. 1O ane > MAP-1 T | —» MAP-2
oy R Ry IR n!
X! %!

decision

2
n, ,
X2 L Yk
©O—

“# First construct forward and backward progression tables
% Second draw the trellis
“» Apply the BCJR algorithm on the trellis

16
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Encoder Operation

{1,0} {1,-1}

U, ‘ R, R, %_’ ‘/ /

i .
/ SV i

% T=uy +R,+R;mod2
ex=T+R,+R, + Ry

©2002 Heung-No Lee
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The Encoder Operation Table

18




The Forward and Backward Tables

Terminology & Assumptions

* Consider the block size N (the size of the interleaver)

<* Thus, u=(u;, u,, us, ..., uy) is a binary sequence of 1’s and
0’s.

% Let c=(¢,’, ¢,’, ..., ¢y’) is an encoded sequence of 1’s and
0’s.

< Let x = (X}, Xy, ..., Xy) = 2¢ — | is channel symbols of +1
and —1.

“Lety=(y;, ¥y ---» Yn) = X + 1, be the observation of x
over an AWGN channel.

* Start at the all zero state and end the trellis at the all zero
state by enforcing the termination rule at the end of the
block.

20
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Another Assumption for the first decoder

“» Lety :=(y% y!) and proceed for algorithm development

< We can do the same with y :=(y", y?) for the decoding
operation of the second constituent decoder.

“ Note that in both decoder, y° is used in common.

21
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Maximum A Posterior probability on input bit u,

% Consider the following log ratio

y\(Sk 1=m! Sp=m)y=1 P(m!m.y)

y) —
Li(u) = l()gTTol—j ()Jz(gk (= Sp=m) =0 P(m/m.y)

— The sign gives a hard decision
» IfL,(u) > 0, u=1 with a higher probability
» ElseifL,(y) <=0, uy, = 0.

— The magnitude gives the reliability of the decision
* the larger the more confident

* For example, if L,(u;) = + oo, then we can say u, = 1 with an infinite
confidence (absolutely sure).

22
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Consider a state transition at time k-1

Current
Be‘jn Past Sk Yk Sy Future End
[ o ®
oo /Xy 000
;\‘

m

“ Pr(u, = 1]y) &< p(y.=1,y)
% Think about the event {u, = 1}
— There are 8 edges from a current state S, , to a state S, defined by
inputu, = 1.
— Note that they are all disjoint events.
< Thus, we have Pr(u, =1,y) x

t - ! N
Z(V’m,’,flnv)juk:l p(‘sk—l =m, S’L =m, y)
23
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The Markov Property

%> Given the current state, the probability on a future event
does not depend on the past.

“» Pr{future | current state, past} = Pr{future | current state}

24
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P(S. =m’, §,=m, y)

p(m’, m, y) = p(S,_;=m’, S,=m, Yi, Y115 Yies1:n)
=p(S=m, Yy, Yien | Sie=m’, Yyke1) P =m’, ¥ygey)
Use the Markov Property
=p(S,=m, Yy, Y | Se™m’) p(Si i =m’, yy4y)
Conditional Probability
= PYiern | S=m, S =m’, yy) p(S,=m, y, | S ;=m’) p(S,;=m’, ¥4 )
Markov Property, Again
=PV | S=m) p(S=m, yy | S ;=m’) p(S, =m’, ¥y )
By definition

= By(m) ¥, (m’,m) o ;(m’)

25
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oy (m’) = p(Sy1=m’, yy41)

% oy (m) =p(S,.; =m’,y,.
() =Sy Yiset) Total Probability Theorem

=35, o=m P(Sg_2 =m", S 1 =m',y1 1)

P(Sx2=m”, S, =m’, yy 4, ¥ik0)

= P(Sk,™m”, ¥140) P(Si=m’, ¥y | S ,=m”, yy.
= Y5 (g ()

Forward Algorithm

26
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Bu(m) = p(yyn | S, = m)

% B(m) = p(Yiepn| Sp=m)
= 2t POkt 1> Yira s Sie=m* | S=m)
= Zms POkion | SiEM, Yiers See™m* ) p(Yyi1 S =m* | S, =m)
= 2ne POViceon | Sier=m* ) p(Yyey s Sy =m* | Sy =m)
= 2 Bt (M*) ¥y (m, m*)

Backward Algorithm

27
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The Kernel, y, (m’,m) :=p(S,=m, y, | S,.,=m’)

«* For transitions (S,_; = m’, S, = m) with input u, = 1
“ p(S,=m, u =1,y,|S,_;=m’)
=p(¥i | Si.;=m’, S,=m, w=1) Pr(S,=m, u,=1|S,_,=m’)

_J

. =Pr(y,=1| Sy=m, S, ;=m’) Pr(S;=m | §_=m’)
=p(¥k | Sp.,=m’, S,=m, w=1) Pr(w,=1| S;=m, S, ;= m’) Pr(S,=m | S, ;=m’)

Likelihood Prob. Legitimate Transition ~ Trans. Prob. By
or not? 1 or 0 u =1

Thus, Y (m’,m) = p(S,=m, y, | S, ;=m’) = p(y | X;) Pr(u=1)

28
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The Kernel (2)

+* The likelihood Probability is the same as in VA

— {S,;=m’, S,=m, u=1} is a particular edge, and thus it determines the
associated channel symbol x, assigned for the edge

— Since y, = x, + n,, we can calculate the likelihood probability knowing n,
is N(0, 6?) where 62 = No/(2E,).

= P(Yil %) = p(ny = yy — X ) ~ exp(- E; [y, — x/N)
+» Now recall that we have defined y=(y°, y!) for the first
decoder:
— yh=xi +nj, , j=0, 1 for the two independent channels.

% The log likelihood probability

p(yi | X)) = P(nok)P(nlk)
~ exp(- E, |Y0k - Xok\z /Ny) exp(- E lylk - Xlk|2 /Ny)

29
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The Kernel (3)

% The second term is 1 if the transition is an allowed
transition, 0 if not.

“ The third term is the prior probability of the transition
triggered by input u, = 1.
¢ Thus, the product of the two terms is Pr(u,=1).

— In turbo decoding, we replace this prior with the extrinsic
information forwarded from the other decoder -- the posterior
probability Pr(u=1 | y?).

— In the first iteration, we don’t have any prior information about u,.

— From the second iteration and on, we will get some message from
the second decoder, we will make use of that information; vise
versa at the other decoder.

30
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Log Ratio Convention
(for all probabilities--priors, likelihood, posteriors)

“ In general, with Pr(x=+1)+Pr(x=-1)=1, we have

el

1+ el
e~L/2 xL)2 xL/2
(—————-——1_*_8_[;/2)'6 /2 = gevl/

-

where L = log Pr(x=+1)/Pr(x=-1)

Pr(z =+41) =

Il

3]

| ©2002 Heung-No Lee

Making use of the Log Ratios
(for both Likelihood/Posteriors) '

% Recall x; = 2u,-1.
< use y, = VI X, + n, with #/(0, Ny/2) —
or yy = x + n, with #/(0, Ny/(2E,))
<+ Let’s use the second one and for the three independent
channels we can define the log likelihood ratios for j=0,1,2

P(yﬂrk =+1)
p(1/i|1,\ = -1)
exp(— E»Iuk — 1?/No)

“exp(—Eslyl, + 12/No)
4E;5 )
= N, Yi.
0
= L¢- !ji

LV = log

= log

32
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Computation of y,(m’,m)
for x% =+1 or -1 (u. =1 or 0)

< Y (m’m) =p(y, | x)  Prings=1/0)
o [exp(.5x% L ¥o +.5 Lo y' X' exp(.5 X% Ly (1)
=exp(.5 X’ [L¢ y% + L’ (u)]) * exp(.5 Lo y' x'y)

Reliability o .

information Extrinsic information

provided by computed and

the channel forwarded from the
other constituent
decoder

, 33
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Forward-Backward algorithm

Li(u) = Ll(a:?)
o e:cp(.5(Lcy2 +“L'1 (ur))
exp(—.5(Ley? + L, (u

OgZ(‘m',‘m):u,\,:l Xp_1 (777',)'7}26) (m/, m)/ﬁk(?n)

Z(m’,m):uk_:O Q1 (7711)'71538) (m!, m)pr.(m)

% Ly(u) =L,y% + L, (u)+L,©(up), the posterior log ratio

Extrinsic information generated
by the present decoder; this
only needs to be forwarded to
the other decoder

34
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Looks complicated,
but it can be compactly written in a single page

evadten o

5.

35
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Normalization During Forward/Backward

‘¢ Normalize o’s and ’s
- Zm ak(m) =1
- ZaBm)=1

— This is necessary because we ignored the coefficient terms when

calculating of y

37
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We could have calculated Pr(x!, =+1/-1|y)
< In this case, we are calculating the probability of events
{x!, =+1} or {x!, =-1} giveny
@ 2p(.5(Ley? + LY (21))
Li(zl) = exp( k 1\
k) = g (L + L (a}))
5 oty st =1 Yot (MDA (!, m) B (m)
+ log k )
Z:(m’,’rn)::c,%f_'—-O Qf—1 (’m',)’yk (m/ m) Br(m)
38
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We have Soft-Input Soft-Output Module

priors _ Extrinsic values:
{Pr(u)} or {Pr(x)} {Pr(u,|y)/Pr(uy)}
SISO
y Postériors {Pr(u,]y)}
from the channel or {Pr(x,|y)}
39
SISO Module
irl,(zrs) Extrinsic values:
1 (U L,(u)—-L; ()
or L,’(xy) Rk Pk
SISO-1
» ’—————D .
y Posteriors
from the channel L;(uy) or

L;(xy)

40




Max* operation

<+ ab = log(ab) =log(a) + log(b)=A +B

< atb = log(a +b) =log(exp(log(a)) + exp(log(b))
= log(exp(A) + exp(B))
= max(A, B) + log[1+exp(-|A-B|)]
=: max*(A,B)

Look-up table

<> Approximation: max*(A, B) ~ max(A, B)
— Good when high SNR

41
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Avoiding the computation of exponentials and
multiplications (Logarithm of probabilities)

% Taking log of in calculating c,
% The max* operation

42
©2002 Heung-No Lee




Consider our 1/3 turbo code example

L/’

L.

For trellis termination
L®=L,-L;
n° 0 L 1 1 2
MAP-1 —>

decision

< First construct forward and backward progression tables
 Second draw the trellis
< Apply the BCJR algorithm on the trellis

43
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Again, the first step is to have the trellis

We are interested
in calculating
Pr{u, =1y} or
Pr{x,=1]y}.

Z(m',m): uk=1 Pr{ln’& Inl y}
or

Z:(m’,m): xk=1 Pr{m’, Inl y}

44




Then, Perform Forward Progression

o, (0)= OL;(O)YZ(O,O)'*‘
0y(0)=1 ,(0)= 0,4(0)y,(0,0) a5(0)= 04(0)y,(0,0) a3(0)= a15(0)y,(0,0) a3(1)y,(1,0)

0\ i
Ox Ox —(0)
N aFw@BRIN
N

o,(4)= ~
ae(0)y,(0,4) ~

ay(6)=
a,(4)y,(4.6)

Normalize o, (m) at each k

45

Then, Backward Progression

Bt ()= Pu(O)1(0,0)+ Sx
BN(4)Y2(0,4)

N -7 @/. BN+2£)/ Brss(0) =
n2(1)
J Need to make use
of observations all the
way to the end N+3; O.W.
there will be edge-effect.

Normalize B,(m) for each k

SN+l SN+2 SN+3

46
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Now with o, _,(m’) and 3,(m) known,
the posterior at any k-th trellis-section can be computed

Thus, we can now calculate
Pr{u,=1|y} or
Prix, = 1] y}.

z(m’,m): uk=1 & k-](m’) Yk(m’ﬁm)ﬁk(m)
or
z(m',m): xk=1 O k-l(m’) Yk(m’am)Bk(m)

47

We have Soft-Input Soft-Output Module

priors Extrinsic val
xtrinsic values:
tPr(u)} or {Prixg)} {Pr(uly)/Pr(u)}
SISO-i
Y; Posteriors

from the channel {Pr(u,]y)} or {Pr(x,|y)}
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SISO Module (Log Ratios)

, priors Extrinsic values:
Li7(u) or L (x,) L;(u) — L;” () or Li(xy) — L;*(x,)
SISO-i
Yi Postériors
from the channel Li(u) or Li(x,)

49

Components of the Turbo Encoder
(Why it works so well?)

%» The role of Recursive Encoder?

— The constituent convolutional encoders of Turbo code must be
recursive (why?)

+* The role of Random Interleaver?

% For illustration, let’s consider two simple convolutional
encoders—feedfoward and recursive.

>

o ;

(a) Feedforward (a) Recursive

v
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The Rate 1/3 Turbo Code

BER performance of Turbo Code {Rate= N=18384

-0.2 Q 0.2 0.4 0.6 0.8 1

Eb/No (dB)
Fall-04 51
University of Pittsburgh
The Rate 1/3 Turbo Code
Histogram of extrinsic information at Eb/No = 0.2dB rate=1/3 All zero word
1 T T T T T T T T .
-- Log ratio of the
] extrinsic is
1 normalized.
1 -- Does each
] histogram look
] like a Gaussian?
-- Density
Evolution
1
-2 -1.5 -1 -0.5 0 0.5 1 15 2 25
normalized extrinsic value
Fall-04 52

University of Pittsburgh




1/0

weight 1 having output weight 2

©2002 Heung-No Lee

Weakest error event is with input

Consider the Trellises of (a) and (b)

0/0 0/0
0 [ ]
11

®
0/1

Weakest error event is not with
input 1, but with input weight 2
having output weight 1

]
0/1

With another 1, it returns to all-zero
path. Otherwise, it never goes back

to all-zero — accumulating a large
amount of distance metric.

53

10000...

CC-1 —~

Both not good
CC-1 L,

000001000...

the free distance of the weakest
error event (2, 2)

Watch What Happens When used in Turbo Encoder

11000...
Bad codeword
RCC-1—~ % .
RCC-1|, Good codeword
il
00100001000... Output
weight 5

the free distance of the weakest
error event (1, 5)

The weakest error event input to one
encoder is interleaved and becomes an

event strong against errors when presented
to the other encoder
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Another Example, Recursive CC [Conv’] codes]

Stote &i‘&%ﬁm for Recuvsive Foym

%W‘*ﬁ “th Ha ”g;ﬁﬁtg%&‘%@”{g
{}Q&{&f? s el %§“ e
vedpuite obe the a.ﬁ*éi%’«f’gf

e oL,

55
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The Weakest Events
¢ The input for the weakest error event is 100100000...,
again input weight 2 (output weight is 6)
— 10000... results in infinite output weight sequence (Strong event)
%+ The next one is 1000010000....
56
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s-random interleaver [Divsalar]

< Good random interleaver must spread any adjacent bits as far as
possible.
— spread-random interleaver

123456...ijk 1l mn...N
s=5

(1) n(2) n(3) ... n(@) n() n(k) ... w(N)
3 9 45 20

% How to construct a s-random interleaver?
— Randomly select a number from N integers {1, 2, ...,N} without
replacement
— The n-th selection ©t(n) will be
* Put back into the pool if |n(n) - n(j)| <s, forall j, |n—j| <s
» Accepted otherwise
— Repeat until exhausted
— Choose s<sqrt(N/2)

©2002 Heung-No Lee

s-random interleaver

%

» There are many ways to generate s-random interleaver

9,
5

% One way is to use the procedure in previous page with the following
heuristic auxiliary rule
% Now, consider a random selection close to the end of sequence, say at
the (N - m)-th selection such that there are m numbers left in the pool
«*  What should we do when this set of m numbers do not support the
selection rule
— Ex) Residual set at (N-5)={1,2,3,4,5} with s=5
— No matter how we select we cannot satisfy the rule
% Go back to (N-100)-th selection, and re-select numbers from that point

and on, hoping not to run into such a problematic residual set for the
rest of 100 selections
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Analytical Performance Bounds using
Weight Enumeration Function
[Benedetto/Montorsi, *96]

+ Recall the transfer function from convolutional codes.

» Note their definition is a little bit different from ours, given
at the section on convolutional codes.

% In order to avoid unnecessary confusion when we read the
paper, we will follow Benedetto’s notation in this section.

59
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Input Output Weight Enumerating Function

% Consider a block code (n, £, d,;,) C with code rate R, = k/n.

¢ Define the input-output weight enumerating function
(IOWEF)

in

AC(W, H) = 3, AY , WoIIh

w,h

where A€, is the number of codewords with output
weight 4 and input weigh w.

“» Example: (100) = (10010 1), input weight 1 and
output weight 3, for (n=6, £=3) code.

60
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Union Bound on Bit Error Probability

“» Using the knowledge on IOWEF, we can obtain

n k
w e e —
Pye) < 3 X A aQ(/2RehEy/No)
h=dpin w=1 "
n

> DpQ(y2RchEy/No)

h’:dmin

where D), := %Zﬁ:l 'wAff,‘_,,l is multiplicity of codewords
with weight 4 (not the number of codewords with weight
h), and E,/N, is the SNR per bit.
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Multiplicity of codewords of weight 4

% It is the total number of nonzero information bits
associated with codewords of weight 4, divided by £.

62
©2002 Heung-No Lee




Example
% (3,2)code C codewords w A
% AC{0,0}=1, AC{1,2}=2,andAC{2,2}=1 000 0 0
% TOWEF is 011 L2
AC(W,H) = 1+2WH+W?H? ol b2
= 1+(2W+W2)H? b 2 2
% Multiplicity

— D,=(1/2) [2*1 + 1*2] =2

&
@@@

Py(e)

Il

1 [ 2 [ 2
o1 ca(\/z 3280 +1-2:Q()2- 2 2/00)

= a 2B4/No)
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Parallel Concatenated Block Codes

«* Consider parallel concatenation of (n, k) block codes

[ bits] [k bits; (n - k) parity bits]

u
f C, g Rate = k/(2(n - k)+ k)
. T
Weight d . [xxxx; (1 - k) parity bits]
preserve
. u C2 i K—— Not sent (punctured)

<+ We know the input-redundancy weight coefficients (IRWC)
for the two block codes

& Co
{Aw?h.l } K {Au:,h,z }

64
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Analysis using Uniform Interleaver

< For the analysis, imagine an
abstract interleaver
— A probabilistic device which maps
an input with weight w into ()
permutations, with equal

bability p=1/(};) (ool
probability p=1/(,,.).
0101
0101 i
*» Calculate an averaged performance ———— Uniform _>< 1001
. . Interleaver 0110
using Uniform Interleaver

— The performance of a particular 1100
interleaver will perform always L1010

better than, or at least equal to, the

average performance.
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Computation of IRWC
for Turbo Code

< IRWC { Ai[h} can be calculated using the properties of the
Uniform Interleaver.

— Maps a single input block of weight w at C, into ( ,i’,)
permutations as input to C, . '

“# Thus, the number of codewords of output weights %,, 4,
associated with input word of weight w is defined as

&1
CIP . A’w,h‘l XA

w,hi,ho ~ (ZZ)

&)
’LU,hQ

66
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IRWEF for Turbo Codes

Cp — Cr
S IRWC AT = Y00 hothy+ho=h} Ay by

*» Having the input-output weight coefficient defined, we can
obtain the input-output weight enumerating function:

ACP(Wj H) = Zw,h AgﬁleHh
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Notation (the same as BM’s paper)

s

> Consider only the systematic code from now on.
Example: (3, 2) code C

s
49@

— A1, AC, =2, andAC, =1 codewords wJ
— IOWEFis ’ 000 0 0
AC(W,Z) = 142WZ +W? 011 I 1
101 1 1

110 2 0

» The weight enumerating function is
BC(H) =2,-" B, H"
where B, is the number of codewords with weight /.
* The IRWEF vs. the conditional WEF A€ (Z)
AW, Z2) =22, A, WV Z
=X WV A, Z
=Y WY AC (2)

68
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Conditional WEF

< Or, the CWEF can be obtained from the derivatives of
AC(W, Z) in the following ways:
A2 = 5y Ay = - LA )

oww W=0
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Union Bound

% We have already used the weight enumerating functions in
calculating the union bounds for convolutional codes [refer
to lectures on Conv. Codes]

¢ Let’s briefly review the union bounds using BM’s notation
<+ First, consider

) (7 7
M;)A (M’Z)- = ZwAwqu/ij

191%4 0.
— Z[ Z w Augj] Hw“f‘j

m m=wtj

Let W=Z=H

Total number of info-bits _ — o
associated with codewords with fin = Qi/@*«?) = Qs
weight m=wj. Serfely e

70
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BER for BPSK

Y, = VE; X, T 1, where x, € {-1, 1} with equally likely

(i > 0] R -
Pr(y, > Olzp = —1) = e 2WNo/2) qy
Jo V/27r(N0/2
2
= 2 i
/\/2.[15/1\] \/271'P o
= Q(\/2Es/Ng) = Q(dg/\/2Np)
©Q) =k T Tdl, w30
® Tr) = =— [ at, X
2m I ' - B, = Ey- (1/Rc)
dEzszs

R, =rate of the code
©— = number of bits
each baud carries

—&

0)
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Pairwise Error Event in m-dimensional vector space

n=(n,n,...,n,)

YSEX+n iid NV(0, Ny/2)
{1,-1}
de=1[y-y|
P = e(\/“;f\:’”) =a(f 2“{, ')
— Jt,’fb(\/mEs)
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The Complementary Error Function vs. Q(X)
e 2 OO
« erfe(r) == [; 2t

2 Q) = erfe()

“* MATLAB only defines the complementary error function
erfc(x)

73
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Probability of Bit Error (Union Bound)

gﬂ@ g Be g i My

/M/»m s

k

%
gy 40
'}: W AC(7)

ey e el T
%

= S D H™

T

m starting from dg.,

B o B g g
with
Dy = Z: ";;#‘iw Multiplicity of the code
RS
where K, iz the code rate.
Traditional approaches = max. dg.,

In Turbo code > Reduces Dy
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Approximation

%+ Using only a finite number of first terms, we have an
approximation

o M~ TRE .
Fie) =~ E Z Dy vl (v"”é‘ ;”;;;"“)~ {6y

starting from m=d,,, ,

©2002 Heung-No Lee
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Where are we now?

“+ We have reviewed how to calculate the union bound on
(systematic) block code (or similarly on truncated
convolutional codes)

“ Now let’s consider turbo encoder whose constituent
encoders are systematic block codes (truncated
convolutional codcs)

©2002 Heung-No Lee
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Parallel Concatenated Block Codes

<+ Consider parallel concatenation of (n, k) block codes

[k bits] [k bits; (n-k) parity bits]
u
C1 — Rate = k/(2(n-k)+k)
. m
rr[:;i?\t/ed . [xxxx; (n-K) parity bits]
u C2 k———Not sent (punctured)

%+ The input-redundancy weight coefficients (IOWC) for the
two block codes or Conditional WEFs are known to us:

_" Y, C»’ ’1
(AD (A2} or  {ARN(2)) {AR(2))

77
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Analysis using Uniform Interleaver

% For the analysis, imagine an
abstract interleaver
— A probabilistic device which maps
an input with weight w into ( ,’f)
permutations, with equal

bability p=1/(F) (o011
probability p=1/1,,

' 0101

0101 ;

% Calculate an averaged performance ———p Ilimlf orm — < 1001

using Uniform Interleaver nierleaver 0110

— There exist at least one interleaver 1100

the performance of which is better L 1010

than, or at least equal to, to that of

Each word with weight w
the average performance

has (fj) matches using Ul

78
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WEFs of PCBC

% Conditional WEF of Turbo code
c C
AgP(Z) — Awl (2) ><-"*1w2 (2)

()

< Example: (7, 4) Hamming code
@ AQW,Z)=1+W(3Z2+Z3)+ W2(3Z+3Z2)+W3(1+32)+ W4Z3
=4+ (@=6 (5)=4
Due to the operation

< AC(Z)AC,(2)=(3 72+73)=749+6Z+72) of UI, the number of
a codewords with
(1) =4 weight w increase

R T

©2002 Heung-No Lee

IRWEF of Turbo Code

+* Once we know conditional WEF, we know IRWEF

kv
AT (W, Zy =3 WA (Z), (8

sl

80
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Examples

s> IRWEF of the PCBC can be obtained as:

ACP (W, Z) = 1 4 W{2.252% + 1.62° + 0.23.2%)+
+ WH1.52% +32° + 1.52%)+
+ WOH0.25 4 157 + 2.26Z%) + WHZ5, (9

< Example-1: A%, = AC1(Z) x AC2(Z) /4 = ZX(9+6Z+72)/4
= 740225+ 1.5Z+ 0.2572)
< Example-2: ACi, = (3Z+322) =Z(3 + 3 Z).
ACp, x ACp, /36 =72(9+6Z + 972)/6
=7%1.5+Z + 1.57?)
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Consider Rate 1/3 PCCC
[See Benedetto/Montorsi TC’96 paper now]

Rate 13 PCCT -

>0

redundancy

bit AL

. " Rate 172 systenaatic
I}ntﬁﬂea\fu convolational encodess
length=N .
. P T STTSTS &
N
R ret‘!unﬁ‘iméy E, ;
it BELE

Consider rate 2 equivalent (2N, N-v) block code
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Equivalent Rate 2 (2N, N-v) Block Code

“» The codewords are all sequences of length 2N of the
convolutional codes, starting from and ending at the zero
state. '

— Concatenation of error events of the convolutional codes.

83
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n-error events in the block
? E a
ST Sveng @: 4}V
W é . iy
/CD wa ¥ owE=w
Information welghs i=d
g, X Esample of o sequence bedonging 0 A, Fowh
% Parity check EF generated by n-error events with total
weight w
AW, Z,n) =2 A, 7
The number of codewords with input weight w, parity weight j,
and number of concatenated error events n
84
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The Conditional WEF

< It can be approximated by (i.e., A€ (7))

. Ry A /
A w, Z) ~ z tr }i‘fk 2. ) £y

¥
FrNcan 3 oA

where

% n,.. 1s the largest number of error events generated by a
weight w information sequence, is a function of w, and

< We neglected the length of the error event, assuming N >>
V.

85
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CWEF for PCCC
(V) {A)
Flumme T ; 4
<% CWEF is ACPw, 2y ~ z: 2 wj}:}m‘*“?
P T | (ﬁ
- Alw, 2, v A, Z, ngl.
. . ‘WY A
%+ Use the approximation (ﬂ\) ~F
Phonin  Renaw .
A, 2y~ S S e
gy «ng‘;.l Thy o » Pyl
- Alw, Z,n i Alw, Z, ns) {5}
% For large N, it can be approximated by terms n,=n, =n,,,,
L 7 w! T AT W 32
A L, Zf - 12 N e [fif:?f}’% E'~ %:xmzc}z .
Ty -
86
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Substitute into this and get the final result

A
Pile) < z w§;z'**' ACF (w /? (1)
we=1 ;iﬁ*k s B Fo g Mg
87

Asymptotic Bounds on BER

- E " )
PlE 3w N
AR A g n’fla'&x- ‘
- W {Ji‘ AR trlM} fu'mzm,} By Mg F gy e

where 1, denotes the minimurm information weight in the
error events of the CC.

%* For a large interleaver gain
— Make the exponent of N, 2n

** Note the term with w_, is the dominant one.

max-W-1, as negative as possible.
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Feedforward conv. code does not work
as constituent codes

% Wi 1s 1 for feedforward convolution code (or a block
code)
— For w=w_; =1, the max. number of error eventsn_, = 1.
— Thus, 2n,, -w-1 =2-2=0.
¢ There is no interleaving gain.
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How about Recursive Conv. Code
as constituent codes

is 2 for feedback convolution code.

— For w=w,_; =2, the max. number of error events n_, = 1
— Thus, 2n, -w-1=2-2-1=-1.
% There is interleaving gain of 1/N.

o2,
%" W

min
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Approximation by Truncation D _, m<M.

y .
Sr{5 {5
2t
b, .
A4 s
g
Sy
e 16 -
165 b RO o .
= \
dfree 5 N
1w . o
a7 i i
[ 1 2 3 4 3 &
iy
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Interleaving Gain

OECIERTS (3 PR T
PCCC or XAk ¥

Hanming
distance
T 3 T
d free 1S :
mcrease 14

from 5 to 8 2

79600

28543802
G.3472 | 52080802
RAITL { BY4LE 02
14 9.1408
2144 0.2052

31 3842,
32 6556,

221
34 14261
s 33143
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Role of Number of States in CC

y@(")

1 the: bit erear produidiliny Sor a PCCU vsing a5 CUs twe revervive comvniationsl enscders with 3,48, and 36 states and

== REE (continuess carves) amd Vo= LG dashed curves)

e interlavers of kngh
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Comparison with Simulation

¥ ;
3
o
-,
T

wh s

1 -

Toed i i o

@ i 3 3 4 B 3 7
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Summary

** All constituent encoders must be recursive convolutional
codes.

+» The effective free distance of constituent encoders must be
maximized.
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Recall, the posteriors of both input and output
can be calculated

Skt Yk Sk
*  Once oy _;(m’) and B, (m) calculated, ~
we can compute the posteriors for the a.1(0) (0X 1
input and the output Pr{u, = 1|y} or
Prix, = 1y}. (D ()
> 5 . (0 A% 2 <
© e m)=PrCy ) Pr(mim) @ @

*  Note that the priors Pr(m|m”), can be
defined either by Pr(x,) or Pr(u,)

Z(m’,m): uk=1 & g (M) Y (m’,m) By (m)
or

Z(m’,m); sk=1 & .1 (m’) v (m’,m)B, (m)
— u, = 0

96 Fall-04
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Soft-Input Soft-Output Module

riors
I; Extrinsic values:
(Prug)} or {Pr(x)} {Pr(uly)/Pr(u)} or {Pr(x,/y)/Pr(x)}
SISO-i
Y Postériors
from the channel {Pr(ulyy)} or {Pr(xly;)}
97 Fall-04
University of Pittsburgh
SISO Module (Log Ratios)
, prl,ors Extrinsic values:
Li’(ug or LG Li(w) = Ly’ (w) or Li(x) — L (%)
SISO-i
¥; Posteriors
from the channel L;(uy) or Li(xy)
98 Fall-04
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Serial Concatenation of Mapping Machines

and Turbo Decoding
N(Oa NO/(ZES))
2’=n(z
u z () X y=x+n
— Mapping-1 — T Mapping-2 (2x-1) >
,../--"""/. n
‘// Tt
Priors: f Extrinsic values: Priors: Extrinsic values:
{P(z’0)} 4 {P(z’|y)/P(z’)} 1 {P(z)} {P(zly)/P(z)}
SISO-2 ] LU B SISO-1
—— — —_— N
Posteriors No Posteriors
from th {P@\ly)} input {P(z]y)} or
cr}?;:rfele {P(uy)}
i
Dec
99 Fall-04
University of Pittsburgh
Serially Concatenation of Mapping Machines and
Turbo Decoding (2)
1"
Priors: Extrinsic values: Priors: Extrinsic values:
{Lz} {L(Z'Wly)-P(z)} 1 {L(z)} {L(zly)-L(z)}
SISO-2 T SISO-2
——————— > b >
y Posteriors No Posteriors
from the 1Lz’ ly)} input {L(z]y)} or
channel {L(wdy)}
u
<«—— Dec F

+* Where L denotes the log ratio of the probabilities. For

example, [,(z,|y) 1= log

©2002 Heung-No Lee

Pr(z,=1ly)

Pr(z;,=0ly)

Fall-04
University of Pittsburgh
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Application of Iterative Turbo Decoding Principle

¢ Serially Concatenated Convolutional Codes
— Benedetto et al, TIT *98
+» [terative Equalization and Decoding

— One of the earlier one is the paper by Anastasopoulos and Chugg,
Asilomar Conf. In 1997

<+ Bit-Interleaved Coded Modulation with Iterative Decoding
— Li and Ritcey, TC 2002

¢ [terative Mutilevel Demodulation and Decoding
— Stephan Brink

+ Iterative channel estimation and decoding/equalization

101 Fall-04
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Serial Concatenation of Convolutional Codes

Rate = k/n
Outer code Inner code .
Re=k/p L Ri=p/n ]
d°; N di

<+ Serially concatenated convolution code (n, k, N) where N
is the length of the interleaver (Assumed to be a multiple
of p)

* Example: k=1, p=2, n=3, N = 200: Rate 1/3 code

— The input to outer code is length 200, and the output of the inner
code is 300

102 Fall-04
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Union Bound Analysis on SCCC

H 2 3

L 2P 7 7
Information weight \\ Z l{;—;] E /1‘%’}!1

Cisdoworsd waight fud

Fig. 7. The meaning of the cocfticients &, 5 ;.

* A;,,: The number of codewords with j error events, where each
error event is with input weight / and the output weight /

* Let nM is the maximum number of error events, then the number of
codewords with input weigh / and the output weight /
N/ <
AT < L ( & \} ST A

— No. of trellis sections

103 Fall-04
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Uniform Interleaver Analysis

«» The coefficients of conditional WEFs for outer and inner

code are
- ”x )
s‘& ] = I) ir - 2 wp

Why bounds? --
neglecting the length

4 < (““ 7 ) Af of error events
- ’ T i

¢+ The coefficients of conditional WEF of Serially
concatenated block code (Uniform Interleaver Argument)

T \/i‘ “/.f’*
,f ; r%‘ “E& ( (} <) }

*j-w3 & w‘"‘!-n’:f?z, N

104 Fall-04
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Bit Error Probability

NN N—I41F N
% Use a bound for (i ) W s

/

<* Thus, the coefficient of conditional WEF of the SCCC

N oWl oy
A< 3 ) 2 v

Rt n¥g :‘“;‘a:. . .
& '; e Examine this
e further
b gttt Lo ‘!M"%h
: NS ‘n NR N i L
& i S
X Flnally, Py < ¢ — b End N : 2 : \ ,\.ﬂ ottt
Fosdi o uw{ weal pigd
FLrLd .
3 " .
Im Foti S -l T3 fn?!‘ }' ""‘: 10w ‘"1" Fewtli ™ (e
105 Fall-04
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The Exponent of N

2,

S oa=nt+ni-1-1
“ At high SNR, the first term—the smallest output weight
term—will dominate.

«* In the paper, the analysis was carried out on this first term
and obtain the following result.

106 Fall-04
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Bit Error Probability using Union Bound (2)

“» When d°% s even,

ol . f.fi

P} EBeovenN =% expp | = ““!E E/Nol 1)

% When d°%is odd

1! hede
—— e

Fe)= < 3me1 N~z

: (s — 3} \ R
~ EX[ {— [—-L—?—ﬂ hi ] RE /Ny p (34
107 Fall-04
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Summary of Major Results of SCCC

<+ The inner decoder must be recursive.
< The outer decoder can be either recursive or feedforward.

% The interleaver gain is N*{-d°:/2} for even values of d°;
and N {-(d°;+1/2)} for odd values of d°;

— Choose an outer decoder with a large, possibly odd, free distance

108 Fall-04
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Different Behavior of Convergence

-
B e 4
R S 7-_6 iterations
. g e, . .
W NG T e : '
\\~ '\‘ 9
2 w N
= N
wt : \
B N
™, : \;""
N, N N
1 e
\‘J’x i
i T
:

84 an
£/ 18]
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HW#6

+» Turbo Code Problems
— P14.1,P14.2,
<% Trellis Code Problems

- P134
— Problem #1: Design a rate-2 8 PSK four trellis-states code without
any parallel transitions
* Find the free ED of your code
» Compare it with that of the best 4 trellis states code
— Problem #2: Reproduce the Channel Capacity results (Fig.2 in
Ungerboeck’s paper) for m-ary PSK signals (m=2, 4, 8, 16):
(Submit the MATLAB program for this, along with your results)

110
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Agenda

«» Density Evolution: Turbo Code

— Refer to Divsalar et al’s TMO Progress Report 42-144 (See this
paper in the course web-page) and Stephan Ten Brink’s paper
(Trans. On Comm. Oct. 2001)

% SISO Module for LDPC Decoding
%* Coded Modulation over ISI Channel

Fall-04 University of Pittsburgh
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Reference Papers

2,
X

% Gallager’s Decoding Analysis (Section 4.3 his Thesis)

2,
()

Two kinds of methods to analyze the code and design a better code
— Use EXIT charts (Ten Brink)
— Use Density Evolution (Richardson)
— Originally, Gallager’s threshold based analysis

<« Design of low-density parity-check codes for modulation and detection

ten Brink, S.; Kramer, G.; Ashikhmin, A.; Communications, IEEE Transactions
on, Volume: 52, Issue: 4, April 2004, Pages:670 — 678.

%» The capacity of low-density parity-check codes under message-passing decoding
Richardson, T.J.; Urbanke, R.L.;
Information Theory, IEEE Transactions on, Volume: 47, Issue: 2, Feb 2001, Pages:599
—-618.

< Design of capacity-approaching irregular low-density parity-check codes
Richardson, T.J.; Shokrollahi, M.A.; Urbanke, R.L.;
Information Theory, IEEE Transactions on, Volume: 47, Issue: 2, Feb 2001, Pages:619
—-637.

Fall-04 University of Pittsburgh 3
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Consider our 1/3 turbo code example again

Ly’

LO=L,-L;’ L,
MAP-1

For trellis termination

decision

% Assume all zero input bits
— All three are all zero codewords {x,°= 0},{x!=0},{x2= 0}
— All -1’s transmitted

Fall-04 University of Pittsburgh 4
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Mapping Rule

% Let’s use the same mapping rule we have been using
— Codeword bit 1 is +1 and codeword bit 0 is —1
— Not very convenient for the purpose of describing the density
evolution, but let’s use it for the sake of keeping the notation
straight
% All zero codeword transmitted > a sequence of all —1’s
transmitted = Negative log ratios of extrinsic values,
likelihood values, and posteriors are favorable.

« All three blocks are sequences of —1’s.

Fall-04 University of Pittsburgh 5
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The Property of Log Ratio SISO Signals

priors .
) , Extrinsic values:
L (u)} or {L'(x)} {L(u) —L’(u)} or {L(x) —L’(x)}
SISO
y pr—
from the {LLR(y)} Posteriors
channel {L(uy) or L(x)}

% LLR(y,) is Gaussian.
#» Posterior LR=LLR(y®,)+Prior LR+Extrinsic LR.

%+ Simulation shows the histogram of extrinsic LR values does look
Gaussian.
— Posterior LR is Gaussian
— Prior LR is Gaussian (Must be independent from y,)

Fall-04 University of Pittsburgh 6
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Property of Log Ratio SISO Signals

% First, let’s take a look at the log likelihood ratio

— y= x+n:supposey is a realization of random variable Y
associated with the binary r.v. X € {-1,1} and the Gaussianr.v. N,
with mean 0 and variance N/(2E,)

— LLR(y) = log[p(y[x=1)/p(y[x=-1)] = (4E¢/Ny) y
“ Given X = -1, we can define
L=(4E/Np*Y = (4E/Ny)*(-1+N)

= pp T (-p)* N
ng ML = -4ES/N0
& 0,2 = Var(L) = (4E/N,) * (N/(2E,)) = 8E/N,
* o2=2wy

— The variance of log ratio value is twice the absolute value of mean.

Fall-04 University of Pittsburgh 7
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Normalized Log Ratio

% LetZ =L/n,
— Var(Z) = (1/p)? 2|u, | = 2/|iy | =Var(noise)
- E{Z}=1
% With p; increase to infinity, var(Z) goes to zero or
SNR=1/var(Z) goes to infinity
“» Higher SNR (Smaller variance) means
— The decision is getting more and more reliable.

<* Recall the density evolution of the rate 1/3 turbo code in
previous lecture.

Fall-04 University of Pittsburgh 8
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Consistent Densities

“» We observed that LLR(y) = i |y
— Consistent probability density
— The variance of the density is twice the mean
“* Not only the likelihoods, but also those of the extrinsic are
consistent Gaussian.
— Again, the variance is twice the mean.
** We only need to keep track of a single parameter, either
the mean or the variance.

Fall-04 University of Pittsburgh 9
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Computation of y,(m’,m)
for X% =+1 or —1 (u, = 1 or 0) [Turbo-Code Lecture]

i

%y, (m’m) = Pr(y, | ) 0)

o [exp(.5x% L, yok +.5 L.y, x) exp(.5 xok L))

= exp(.5 x% [L, %+ Ly’ (u)]) * exp(.5 L, y', x1))
Reliability J/
information Rellablhty Extrinsic information
provided by the information computed and
systematic provided by forwarded from the
portion the parity other constituent
portion decoder
Fall-04 University of Pittsburgh 10
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Forward-Backward algorithm [Turbo-Code Lecture]

Li(ug) = Li(=))
og exp(.5(Leyg + Lf (uy))
exp(—.5(LeyQ + LY (ug))

% Ly(uw)=L,y% +L,’(u)+L,®(u), the posterior log ratio

Extrinsic information generated
by the present decoder; this
only needs to be forwarded to
the other decoder

Fall-04 University of Pittsburgh
© 200x Heung-No Lee

Investigation of Iterative Convergence

T[-l
Priors: Extrinsic:
{alk} - {elk} {azk} {ezk}
Log Ratio n Log Ratio
SISO-1 SISO-2
Likelihood: i

{53, {f'}

< Extrinsic output (Consistent Gaussian) is the prior input to the other.

— Only need to keep track of a single parameter, either the mean or the
variance (or SNR = mean?/var = u2/2pu = w/2).

Fall-04 University of Pittsburgh 12
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Investigation of Iterative Convergence

Zero initially Extrinsic:

Ha1 = He2 m » Koo = He; ‘ Heo

Log Ratio Log Ratio
SISO-1 SISO-2

** Investigate the input and output relationship of an
individual SISO module.

% First SISO-1 starts with the likelihood inputs only.

Fall-04 University of Pittsburgh 13
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Monte Carlo Simulation

% To determine the noise figure, or input/output transfer
function of SNR, of the SISO modules.

< G1:= function(SNR1, )= SNR1,,, , defined for SISO-1.
** G2:= function(SNR2, )= SNR2_ ., defined for SISO-2.

“» Generate the sample input priors with a given input SNR,
and measure the SNR of the output extrinsic values.

out °

out °

** Generate the samples independently from each other for
different SNRs and different modules.

Fall-04 University of Pittsburgh 14
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Monte Carlo Simulation

For SISO-1
: 1
G_enerate the priors {al, } N, 1)
with mean p, Calculate the
aly = p, + sqrt2fu,))*wy mean p, of
{e'y}
G,

Generate the log likelihood values
{f°} and{f',} due to all —1’s sequences
Note both can be generated with a single information E,/N,,

< With a fixed E,/N, we can obtain input/output relationship between p,
and p:
— Obtain {yi{,=-1+ni,} from Gaussian samples {n,} with zero mean and
variance Ny/(2E,).
— Obtain the log likelihood ratios from f{=L *yi,
— E,=E,*Rate.

Fall-04 University of Pittsburgh 15
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Monte Carlo Simulation (2)

For SISO-2

Generate the priors {a?}

V‘;ith mean , Calculate the

%y = W, T sqrt2fp,)*wy _ mean i, of

] I
G
Generate the log-likelihoods
{2} due to all —1’s sequences
Note this also can be generated with information E,/N,,
Fall-04 University of Pittsburgh 16
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Monte Carlo Simulation (3)

%> Both inputs, likelihood and priors, are consistent Gaussians
which can be defined by any single parameter from
— Mean
— Variance = 2 Mean
— SNR = Mean?/Variance = Mean/2
%+ At the first iteration
— Priors are all Os
— Only likelihood ratios are used
% Upon obtaining the output sequence (extrinsic log ratios),
calculate the mean (and thus the output SNR).
%+ Obtain a set of such input-output pairs
— For example, try SNR, =0, 1,2,3,...,10dB.

Fall-04 University of Pittsburgh 17
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Monte Carlo Simulation (4)

SNRI,, |
SNR1, SNRIy
SISO-1:
G
— Dependent
E/N,
{ f]k} upon Ey/INg R
% Obtain the input/output transfer function G1
“+ Increase input mean i, and calculate the output mean
% The first SISO starts with 0 dB SNR; (no prior information)
Fall-04 University of Pittsburgh 18
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SNRI,,




Monte Carlo Simulation (5)

¢ Draw G,! on the same G,
graph SNRI,,, | / .
%* Watch the iterations on Gl
the graph SNR2,, 2
% In the beginning
SNR2, =0
0 SNRI,,
SNR2,,
Fall-04 University of Pittsburgh 19
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From Divsalar et al’s paper The paper
pap Available at
Old class web-
o Site.
|
£
I
| swowa/ 4
’ 4 / ;f”;nz.yTTERAnc:N
f\s('i#EF:ATIz:)N
B S S e R R o
SMR, SN2,
Flg. 7. Rterations and convergence of a turbe decoer.
Fall-04 University of Pittsburgh 20

© 200x Heung-No Lee




Mutual Information Between Information Bit and

Extrinsic Information
[Ref: Ten Brink]

%+ Investigate the transfer function of

3 ) {a}
mutual information ;

o 1y =IX; a).

&

{ey}

o,
4’}'

I = .I(X; e).. o E/N,
Obtain the distributions from the
histograms of samples of {e, }.

¥

%,
@%

a4

@
#

Assume consistent Gaussian for{a,}.

&,
2

If iteration be successful, these two
measures will converge to an
identical measure.

@

Fall-04 University of Pittsburgh
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The Same Monte Carlo Simulation

Approach is the same

* generate the consistent Gaussian samples {a,} and

» calculate the histogram of extrinsic output {e,} (more complex
than calculating only the mean, but more interesting and robust)

) 1 — 7 ag e
Li=g- 3 [ m =

s L 1 TEE
2 palglX = oy
PalglX = —11+patglX

wld =1 3

lg=g~ > / N Pelfly =)

&‘&‘”—lv R
v ek - pﬁ.gf{g‘? g
P = DA X = 1)

Fall-04 University of Pittsburgh
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Extrinsic Information Transfer Chart

a8

26

o irgiectory o€ Marsdive
digding @ DA

mamory 4 {10, Gi=i02s, 037}

et gecndor, 2 BAR ke
getgnd denadies, 0.0068 -

oup 1, of fiest decoder hecomes input |, 1o secoRd decsder

Hiest dpmadir, 908

i Afw'f
',"* 3 gecond ducoder, 0148 &
[ R 2
o 9.8 T4 &6 B3] %

cattpt ,, of sesop decodar beonmes inpa 1, 10 Test duonde:
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SISO Module for LDPC Decoding

Priors: {a,} Extrinsic: {e,}

Log Ratio

Likelihood: {f,} SISO POSteriors: {P}

% The posterior is p,= (fta,)+e,.

— The posterior is obtained from message-passing algorithm on the bipartite
graph; ideally this should be determined by making use of the entire
information presented at the bit nodes such that {f, },_;. and {a,},_;.n

% Unless a systematic code is used, the posteriors are available only for
codeword bits—we do not have them for information bits.

— From the posteriors we get the best codeword—but not the information
sequence

Fall-04 University of Pittsburgh 24
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Start the message passing with f,+a,

fi+a, fta, fita; fita,

fita; fgtag fita,

fytag  fytay

< Start the message passing iterations with the likelihoods
and the priors (or whatever one that you have)

% At the end of iterations, we get the posteriors {p, }

Fall-04 University of Pittsburgh
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Serial Concatenation of Mapping Machines

and Turbo Decoding
2’=m(z x’ X
u z ( ) y=x+n
—* Mapping-1 — T Mapping-2 (2x’-1) >
- - n‘\JN(O Ng
/_/ s 2 ES
I
Priors: !I Extrinsic values: Priors: Extrinsic values:
{P(z’y)} L {P@ P2} 1 {P(z)} {P(z]y)P(z)}
SISO-2 n SISO-1
————————— ———— >
y Posteriors No Posteriors
Fom the {P2Jy)} input {P(z)y)} or
channel {P(uwly)}
ua
<+— Dec
Fall-04 University of Pittsburgh 26
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Coded Modulation over ISI Channel and
Turbo Equalization and Decoding

u b b=nbd) z X y=x+n
E der Bit-to-sym ISI
— ©heode n Mapping Channel [*\2 y
n Ng
N, 577)
Bit-to-sym n _
Mapping L_TLJ
Extrinsic val Pri Extrinsic values:
Priors: xtrinsic values: riors: {P(by)/P(by)}
(P2} (P(zly)/P(z)} R — ‘
. n' =
MAP De-mapping Decoder
y —>|_Equalizer
LDPC decoder cannot Posteriors
give this, unless it is in {P(bly)} or
systematic form —————» {P(wy)}
Fall-04 University of Pittsburgh 27
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Example of ISI Channel with 1 Memory

Assume z, € {-1, 1}

input state

— =z hytzy hy)tn = x +ny

input, output

1 -1, (-hg-h,)) _
+1
-1 othy)
B + 0+ 1 —

< Four possible clean channel outputs x, at four branches
< By comparing with y,, likelihood probability can be computed at each
edge
Fall-04 University of Pittsburgh 28
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Agenda

“ Notation

% Cycle Free Graphs

¢ Gallager’s Decoding Analysis (Section 4.3 of his thesis)
— Threshold Phenomenon and Calculation
— Irregular LDPC codes (Luby et al)

— Density Evolution on Bipartite Graph
— Richardson/Urbanke, SYChung, etc.

Fall-04 University of Pittsburgh 29
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Notation on Reliability L,

% IsitL,=4E/N, or L, = 4 VEs;/N,? — It depends on notation
I used

“ I have used two channel models without explicitly
mentioning which model [ was using

 Basically, for both models SNR = 2E/N,, is the same
1.y =% +n, with M0, Ny/(2E,) ) = LR(f) =4E/N;y,
2.y, =VEs x, +n, with M0, Ny/2) > LR(f,) = 4/E;/N, y,

%+ Thus, eventually both approaches give the same results
with the respective definition of y,

Fall-04 University of Pittsburgh 30
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Notation (2)

** I meant to say Pr{Y=y} =limy, _ , Pr{Y € (y, y+dy]}/dy
= limyy, _ o [Pr(Y < y+dy) —Pr(Y< y))/dy
** It’s the probability density function when it exists, such
that
= p(y) = limy, _, o[FyOrtdy) - Fy(y))/dy
% From now on, I will use the notation p(y) to denote a pdf
of random variable Y for continuous random variable

Fall-04 University of Pittsburgh 31
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Threshold Phenomenon

<+ There is a certain threshold value associated with a (n, j, k)
LDPC code

“» When SNR is greater than the threshold, the bit error
probability can be made arbitrarily small as the block
length tends to infinity

“» When SNR is less than the threshold, the bit error
probability is greater than a positive bit error probability,
regardless of the block length

Fall-04 University of Pittsburgh 32
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Cycle Free Tree

»  Unlike our previous notation, lets’ now have the tier-index start
from the top to bottom

Tier-0
Tier-1
Jj-1 check eqn’s . NN\ -
=TT g )
Dit-nOdEs- - - - O N / i
. . ier-m
Jj check an’S\J EN eoo e
Xd
Fall-04 University of Pittsburgh 33
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Number of Independent Tiers m
(n, j, k) code
< Let m be the total number of tiers
“* The total number of independent digits at the 0-th tier =
H*(k-D*[G-D*(k-1)!
— The last tier = j*(k-1)
— The others = (j-1)*(k-1)
0> 1+ DG G DI > [G-D D)
<> m <log(n)/log((j-1)*(k-1))
Fall-04 University of Pittsburgh 34
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Recall, Simple Decoding Example (n=9,
=2, k=3)

% Suppose we have
r=[100000000]

% Recall our simple
example, using the
majority rule, the first
error gets corrected.

Fall-04 University of Pittsburgh 35
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Assumptions/Approach
With (j=3) example

&

» Consider the BSC with cross-over probability p,, .

Ll

k3

%+ Consider the hard decision decoding:

— If both checks are unsatisfied, change the digit at the first tier.

— With the changed digit, perform the second tier, and so on.
% The error probability of the hard decision decoding should
be an upper bound to that of the probabilistic decoding.

%,

Fall-04 University of Pittsburgh 36
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Analysis with The Simple Decoding
(=3, k=4)

k—1 bits

% Suppose we start the iteration with an error
occurred at a bit node, which happens with
probability p, .

19 tier J — 1 checks

% The first tier calculation involves the first
and the second sets of digits (bit nodes). i

)*;The 2nd set

% The 2" tier calculation involves the second

and the third sets of digits (bit nodes). I

ee ‘.EThe 3rd set

ond tier

%* Now consider the red digit is received in
error.

5,
R

Each of the two checks constraining the digit
is violated when there are even number of
errors in (k-1) digits.

Fall-04 University of Pittsburgh 37
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Analysis with The Simple Decoding
(=3, k=4)

k—1 bits

% A parity check constraining that
“The first set

digit will be unsatisfied iff an
even number of errors in the rest
(k-1) digits, and the probability
of this event is

Jj — 1 checks

0.5(1+(1 - 2py)<-) o
“» An error will be corrected when N\ "/The 3rd set
both checks are unsatisfied.
Fall-04 University of Pittsburgh 38
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Analysis with The Simple Decoding
(=3, k=4) (2)

¢ Thus, the probability that a digit is received in error at the
first tier, and then corrected after the first iteration is

Po[gos(l +(1 - ZPO)kj)]z

—
Error in the Even number of errors
digit in the in (k- 1) digits
second set Both checks
Fall-04 University of Pittsburgh 39
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Analysis with The Simple Decoding
(=3, k=4) 3)

% Now consider the situation when the probability of a digit
is received correctly, but changed due to both checks
violated

(1- pe)[0.5(1 — (1 - 2pp)<HR

Received Odd number of Both check
correctly errors in (k-1) bits O cheeks
Fall-04 University of Pittsburgh 40
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The Probability of Bit Error in the
Second/Higher Sets (j=3)

% The second tier calculations will be similarly done with the
bit error probability on the second and the third sets.

¢ A bit error probability at the second set is determined by
= p1=po (1 =[0.5(1 + (1-2po)*H)]*) + (1- pp)[0.5(1 — (1-2py)* )2
{Error occurred, but not flipped} OR {Error not occurred, but flipped}

%* A bit error in the third set is again p, .

“» At the end of 21 tier calculation, a bit error in the third set
is determined by

= P2 = po(1=[0.5(1 + (1-2p)*H]*) + (1- p[0.5(1 — (1 -2p)*HP?

Fall-04 University of Pittsburgh 41
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By Induction (for j=3)

*» The error probability of a bit in the (i+1)-th set, obtained at
the end of the i-th tier calculation is

= Pi=po(1 = [0.5(1 + (1-2p, YD) + (1= p[0-5(1 = (1-2p, )P

Fall-04 University of Pittsburgh 42
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Convergence Behavior

% {p;} converges to a number 0 < ¢ <1
< We want to find p,,, := max p, such that c is arbitrarily

small.

@ If py < Pray then {p;} converges to zero.
“ If py> Pax » then {p;} converges to a non-zero positive

constant < 1.

Fall-04
© 200x Heung-No Lee
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{p;} converges to zero if
Po < Prax = 0.0394 for j=3, k=6

Iterative Behavior in Hard Decision

pi+1

Iterative Behavior in Hard Decision

006 g : 03 :
Stéart ' End
()| E——— ............................ //pn = 0.0804 ..
/// »
/// :
002L/ ....................... ............................
s 0.03952 Start
0 ; i 0L ; i
0 0.02 0.04 0.06 0 0.1 0.2 0.3
pf p:
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Examples

< Table in the left lists of ik Rate
maximum p, resulting in 3.6 112
P1oo < le-6. 3 5 2/5
“» Compare the rate %2 codes 3 4 1A
— j=4is the best. 4 8 172
«» As the rate decreases, 4 6 13
Puax INCTEASES. 4 5 15
5 10 172
5 8 3/8
5 6 1/6

Fall-04 University of Pittsburgh
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Maximum
Po

0.039
0.061

0.106

0.051
0.074
0.095

0.041
0.056
0.086

45

Approximation (j=3)

terative Behavior in Hard Desision

* pir1 = p; 2(k-1) py
“pi=Cil2(k-D]

Fall-04 University of Pittsburgh
© 200x Heung-No Lee
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How about when j > 4

% More than 3 checks per digit.

+* Rule: A digit is changed when b or more checks were
violated (Determine optimized b that minimizes p;).

/ among (j-1) checks are violated

o Error
-1 . k-1 k-1
7= 11+ (1 =2p) 1—(1-2p)" " i1y
piqr = po{l- L () )
[=b
=1 k=1 - k-1
j—1,.1-(1-2p) 14 (1= 2p;) i1
R D I e
1=b
Fall-04 University of Pittsburgh 47
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Minimize the error probability with optimum b

+* The solution to this minimization is the smallest integer b
for which

1-pg  p14+(1-2p;)* 112p—j+1
po  — '1-(1-2p;)k-1/

As p; decreases, b decreases

s
F

b
&
i
¢

Figwre 450 Behavior of decoding iparations for 7 > 3

Fall-04 University of Pittsburgh 48
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Change of Slope (j=4, k=8)

- Iterative Behavior in Hard Decision
1 T T T

b=3

Change of slope occurs ) : : o
107k N 415tlterat10n

at 41% iteration

pi+1

Fall-04 University of Pittsburgh 49
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Improved LDPC codes using Irregular Graphs
(Take this with a risk)

** The number of total edges should be the same.

> At a bit node, more checks more reliable message it can
generate (from our examples, not true in general, only from
j=3 toj=4).

% At a check node, a less number of bit nodes means the
more valuable message it can generate and pass it to the
associated bit nodes.

<» Competing requirements

— Irregular structure provides more flexibility, leading to a better
performance.

Fall-04 University of Pittsburgh 50
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From Experiments (take this with a risk)

¢ Higher degree bit nodes -- connecting to a more number of
check nodes -- tend to lead quicker correction capability.

«» These higher degree nodes provide better information to
associated check nodes.

*» These checks subsequently provide reliable check to lower
degree bit nodes.

“» With irregular LDPC codes, the LDPC codes was shown to
give performance better than the turbo codes.

Fall-04 University of Pittsburgh 51
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Threshold for AWGN Channel with Probabilistic
Decoding

<+ If we know the distribution of the i-th log ratio, we can
define the error probability.
“+ Use the consistent Gaussian density evolution
— Only needs to know the mean (or the variance)
< Use convolution in time is multiplication in frequency
domain

— Convolution of pdfs is multiplication in characteristic functions
(Fourier transform of pdfs)

% Calculate the mean values for each and every tiers, and
find the probability of error at the last tier.

Fall-04 University of Pittsburgh 52
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Agenda

¢ Density Evolution on the LDPC code graph

Fall-04 University of Pittsburgh 53
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Log Ratio Algorithm

** Take the log of the ratio of the poster iors

k——l
r(ry = S 1 - 2p,
l(_)gP?(ld lly W) _ Pd_ | Z (J l( Pit)
Pr(zq =0ly, S) 1 2 B —] 1+ H (1 2pir)

%* Using tanh(5) = fj:—_ﬁ , the summand of the second term

: N
1 (=11 [T L tann(HER)) L (= 1)* [T} tann(EEPiL)

lo = log
D [ et (D)~ 9y [ a0

* Making use of tanh~1(z) = 1logl+“’3 it becomes

$ioy 2 tanh™ (= DF ST tanh(LE20))

Making use of
; . - )y tanh! being
=57 (=1)* 2 tanh~1 [‘_ 1 WH%Q LE(py) .
2= N ) (=1 odd function
Fall-04 University of Pittsburgh 54
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Product of Real Numbers
s 1 oy = [I1; sign(ay)] - exp(E; log(|ayl))

**a b=sign(a) sign(b) exp(log(lal)) exp(log(|bl))
s H;ﬂ;% ta,nh( O‘-(gil) )

= 2] sign(LR(pi))]-exp(Sf=] log(tann(EEDly)

Fall-04 University of Pittsburgh 55
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fx) = -log(tanh(x/2)) = log%*}

% Use the identity of product of real numbers to get rid of

product
jZ (-1)*2 tann~ 1( H tanh(Z (p:z)))
=1 =1
= Z -1* [H sign(LR(py))] 2 tanh™ exp( Z_: 10q(t(mh(| §1?11)l))]
=1 1=1
P
= Z H sign(LR(p;))] - f~ 1(2 FLRGDD

=1

\/ \
Information generated

_ Log ratio: info.
by the i-th check node from bit nodes

Fall-04 University of Pittsburgh 56
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Getting Rid of (-1)* Term

“» We can get rid of (-1)* term in the right side of Theorem
4.1 by defining

Jf(x):=-log(tanh(x/2), x> 0

Fall-04 University of Pittsburgh 57
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Finally, the Log Ratio Algorithm

% Note the ratio here is Pr(x=1)/Pr(x=0), which is the inverse
of the ratio used in Gallagar’s thesis
“» With the following definitions

— LR(py) := log——d—lﬁpd LR(py) := l()glfi;)ﬂ

_ N Pr(zg=1|Sy)
LR(p)) = loyj—l—)pr 2, =0[5.y)

> Theorem 4.1 becomes

LR(p)) 1= LR(pg)+X1 = [TFZ1 sign(LRpaIFISZE FULR(pi))]

Fall-04 University of Pittsburgh 58
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Algorithm with Summations
(n, j, k) code with f{x) := - log(tanh(x/2))U(x)

++ Initialize:
— LR(E)=(4E/Ny)y,,
— LR(r,)=0,#=1,2, ...,nand [=1,2,..., k
< Iteration:
— Bit-to-Check messages: LR(q qy(my)> =1,2,...,ms m=1,2, ..., j
LR(q, g1(mg) = LR(E) + 2y 2 o LR g1 (1)
— Check-to-Bit messages: LR(rqy(, )> =1,2,...,L; m=12,.... k
LR(er(m,/),/) =[Mwsm Sign(LR(QQz(m Y, )]
A ¢mf(|LR(qQ2(m ',1),/)|)]
% Output:
— LR(p) = LR(f) + X LR(rt,Ql(m,l))

Fall-04 University of Pittsburgh 59
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Distribution of a RV defined
by the Sum of Random Variables

% Consider a random variable Z which is defined to be the
sum of two independent random variables X and Y.

% Given the distributions of X and Y, say with pdf (or pmf),
p.(X) and p,(y), we can find the distribution of Z.

“ p(Z=X+Y=z) = E {p(Y=2-X)}=/ py(z-X) p(x) dx
“» Convolution in one domain is multiplication in the other
domain [Fourier transform)].

% A characteristic function of a random variable Z is defined
as

E{e"7}.
% Thus, we have E{e"X* Y= E{e"X} E{eWY},

Fall-04 University of Pittsburgh 60
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Density Evolution

*» Assumption of independence: all the log-ratio variables in
the algorithm are independent random variables.

“» We want to be able to determine the distributions of all
involved random variables as the iteration proceeds.
<+ Bit-to-check message

- A=BHC+Cyt+...4+Cy))

— Apply the Fourier Transform to the distributions of rv’s B, C,, ...,
Cy.;, and get the distribution of A by taking the inverse Fourier
Transform of the F(p(B)) -F(p(C,)) -F(p(C,)) -...-F(p(C;.,))

<* Check-to-Bit message

— C=I[HA)+ HAY* ...+ h(A)]

— h:R — {-1, 1} x {z: z > 0}, such that (Sign x Magnitude)

— Summation of functions of random variables

— Apply the Fourier Transform to the distributions of 4(A;)

Fall-04 University of Pittsburgh 61
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h(z)

% h(x) := (s(x):=sign(x), f(x):=-log(tanh(x/2))),x € R

3 —

oty

e

Monotone decreasing 2 e

s

e

A ‘x,.(fco, )

% 25 3

i a—
0

e
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How Do We Obtain the Distr. of A(A)?

*» We have the histogram p(x) of A—the distribution of A.
*» How do we obtain the distribution of 4(A)?

Fall-04 University of Pittsburgh 63
© 200x Heung-No Lee

The distribution of /4 in terms of Fy(x)

o

y

h(x) = (S:=1 o0y = Lix<op, Mi=1 o0y AX) + 10 f(-X))
Thus, the domain of / is R, and the ranges are {-1, +1} and [0, +oo].
Now consider the distribution of Pr{S=s, M(x) < y}.
Pr{S(X)=s, M(X) <y} =Pr{M(X) <y, X>0}1,
+Pr{M(X) <y, X < 0}1,
“ Pr{M(X<y, X >0} =Pr{fX) <y, X>0} =Pr{X > fi(y), X > 0}
=Pr{X > f(y)}
=1 - F(Ay))
& Pr{M()<y, X <0} =Pr{f-X) <y, X < 0}
=Pr{X < -f(y), X< 0}
=Fx(=Ay))

2,
0*%'

Lo

oy

Y

%
£
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Thus, we have

“ H(s, y) =Pr{S=s, M(x) < y}=[1 = Fx(fy)] Ioy) + Ful=AvD 1=y
=H! 1s=+1 +H? 1s=-1
% Check if it is a legitimate distribution:
— Pr{S=+1, y=co} + Pr{S=-1, y=c0}=1?
— Asy = o0, Ay)=0.

{ Fx(x)

:

-Ay) 0 ) X

Fall-04 University of Pittsburgh 65
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Take the derivative to get the density

3
@:j

H(s, y) = Pr{S=s, M(x) < y}= [1 = Fx(Ay)] Losy + FlAVD) iy
=H'1q,, +H2 1
© dHGs, y)/dy = [1 = Fry(RyDIAy Loy + Fo (- n/dy 1o
%> First,
d/dy y) = d/dy [(e¥+1)/(e¥ —1)]= — 2/(e¥ - eV) =— 1/sinh(y)
% [1=Fx(Ay)))/dy: (For this, let’s assume continuous F(x))
# —[d/df(y) Fx(Ay)] - [d/dy f(y)] =—px(Ay)) - (= /sinh(y))

= px(Ay))/sinh(y)
@ Fol=Ay)/dy = [dd(AY)) Fx(Ay)] - [d/dy (=Ay))]
= px(-Ay))/sinh(y)

< Therefore,
“ Pu(s, y) = px(Ay))/sinh(y) 1., + px(Ay))/sinh(y) 15,

Fall-04 University of Pittsburgh 66
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How about inverse function H-!
from (S=s, M=y) to x

< Domain: (s€{-1,1}, M=y € [0, o0])
*» Range: x=sy € [-00, +00]
< H'(x) = H'(Ax)) 1,50y + HA(A-x)) 1<,

Fall-04 University of Pittsburgh 67
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Gaussian Density

Gaussian Density
025 — T T | T T
p(X)
x=2.0, y=0.27
x=0.1, y=3.00
p(S=+1,y)
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Convolution of Two Distributions

2 HI*HZ = [Hll * Hzl +H12 * H22] 1S:+] + [Hll * sz + H12 * H21] ls=-1

<» We can make use of the densities, dH

— The derivative operator commutes with summation and integrals

Fall-04 University of Pittsburgh 69
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The Algorithm

¢ F here implies the Fourier Transform
< F(p(A)=F(p(B)) -F(p(C)) - F(p(C))) - ... -F(p(Cy.py)
@ Co=h"h(A)+ h(A)+ ... + h(AL)]
%+ The distribution of C can be obtained from
p(c) = dH'[F{F(dH,)-F(dH,) -...-F(dH, ;)}]

Fall-04 University of Pittsburgh 70
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Graphical Illustration of
Density Evolution Algorithm

channel LLR

o2 T T ! T T i ! ! T
[0 1 P T a0 e S
L 0 g O A :
[ 1= e S T P
0 i i i i ; i i i |
-25 -20 -15 -10 -5 0 5 10 15 20 25
check-to-bit messane
n»": T T T T T T T T T
01 F B
005F R
& 1 A 1 A A 1 1 1
-25 -20 -15 -10 -5 0 S 10 15 20 25
%107 bit-to-check message
15 T T T T ™ v T T T
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P(e) vs. Iteration Number in Density Evolution

Density Evolution
T

2 107
'
-+ Density- Evolution: 12} :
..... (S,E)Idpccode ek
" Starting:at P(e)=0.12!
10
10° i i i i H
1] 5 10 15 20 25 30
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Iteration Murnber

Fall-04 University of Pittsburgh
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Density Evolution

*» Making use of Gaussian approximation (Sae Young Chung
and Forney, IT 2001)
— Looks like the fastest DE algorithm
— Recent one by Jin and Richardson: not clearly written

¢ These are only for fast calculations

Fall-04 University of Pittsburgh 74
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Summary

% Density evolution can determine the threshold.

“* Density evolution idea is currently used in many areas
— Coded Modulation for MIMO channel
— Compressive sensing
— Joint equalization and decoding
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The Final Exam

% Dec. 15" : 10:30am — 12:30pm.
*» Coverage: Entire course materials

Fall-04 University of Pittsburgh 76
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The Term Project
(Due by Dec. 17t)

5+ Choose a topic of your own and submit a paragraph (less than 10 sentences) by
next class
— Topic sentence of your term project
— Objective : what are you aiming to achieve in your project.
— Expected results
— Tasks: what you need to do to

% List of possible topics (simulation and verification)
— Turbo codes
— Reed Solomon codes
— Correlation model (Markov chain) + LDPC codes
— Trellis codes

% Survey paper
— Recent advances in Reed Solomon codes (soft decoding, polynomial fitting based
issues)
— Recent advarices in LDPC codes (design, decoding issues)
Fall-04 University of Pittsburgh 77
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Fountain Codes: Viewed from the
perspectives of Shannon and Gallager

Tutorial Session: 4:20pm — 5:50pm
0 @223
AF 1= 59
6/17/2010

©2004 Heung-no Lee

Aim of this Tutorial

*» Motivated by the success of Fountain codes for internet
application

«» Review a few key ideas of Shannon and Gallager leading
to the creation of Fountain codes.

%* Possible new research directions.

©200x Heung-No Lee




Agenda

% Shannon’s Channel Coding Theorem(1948)
— Typical set
— The idea of fan

% Gallager’s Thesis 1962
— LDPC codes
— MAP decoder

<» LDPC codes over BEC

— TIrregular LDPC codes (1998)
— Fountain codes (1998)

©2004 Heung-no Lee

Communications System Model

Input Noisy || Output ..
X Channel Y Decision

Source

% Input/Output Relation of A Noisy Communication Channel
Y=X+N
> Use the channel » times.
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Entropy

“* Shannon introduced Entropy as Measure of Uncertainty
— Entropy : H(X)
— Conditional Entropy: H(X|Y) or H(Y|X)

“» When channel is noisy, the conditional entropies are non-
Zero.

*» Reliable communication is possible over a noisy channel
iff the transmission rate is smaller than H(X) — H(X|Y).
— Showed it is possible to find a code so that

P(e) = 0 as long as rate < H(X) — H(X|Y)

©200x Heung-No Lee

Meaning of Entropy

% Uncertainty = Amount of Information = The number of
bits needed.

%* An information source with large uncertainty produces a
large amount of information.
— Weather forecast in LA vs. Weather forecast in Pittsburgh

“* A channel with strong noise causes large ambiguity.
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Entropy and the Law of Large Number

% Let X be a 1-0 Bernoulli with 1(or error) appearing with prob. 1/10.
— H(X) = 0.47 from previous page.

% Consider a sequence of X’s of length », (X,, X,, ..., X,).

% For a large n, due to the LLN, the set of sequences can be divided into
two exclusive sets.
— A typical set of sequences which occur in real experiment

— An atypical set of sequences which almost never occur

<+ Shannon noted that the size of the typical set is2"#*).

&

©200x Heung-No Lee 7

Typical Set

< Consider binary sequences of

length 100 (n = 100). | & | " elements

% The number of 1s you see typically
is 10.

— Typical sequence happens with
probability close to 1.

Non-typical set

‘— Non typical sequence happens Typical
very rarely. (Law of large numbers)
» A chance to see the all 1 sequence?

“ The size of typical set is

2nH (X) Happens most of
the time; smaller

©200x Heung-No Lee 8




Shannon’s Key Idea:
P(e) in Random Codebook Construction

¢ Let’s select the message

set(a codebook) randomly. () SnH(Y)

“* And, see if we can make P(e)

very small. =

+» Given a fan of size 2"7*"=»)
decoding error occurs if
there are more than one
messages.

— See the analysis in the .
following page

211H(X|Y=y)

©200x Heung-No Lee

Y=y

Shannon’s Key Idea:

P(e) in Random Codebook Construction (2)

nH (X
%+ Steps: 2"
— Select the first message (the red
dot) and send.
— With probability close to 1, we get
the typical output y.

— Randomly select the rest of the
messages.
— Consider the fan of y and find out
the probability of decoding error. D XY=y)

— Decoding error occurs when any
one of the other 2R — 1 messages °
is selected inside the fan. °

% So, let’s obtain the decoding error
probability P(e).

©200x Heung-No Lee

HnH(Y)
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P(e) in Random Codebook Construction (3)

n 2"
& Ple)=1- (1 _ w The probability that
L 2 ) a message selection
K—/_———*

R is made within the fan
<1- (1 _ 2—n[H(X)—H(X\Y)])

~1— (1 _ prRy=nlH(X)=H (XIV)] )
— 2—n[1(X;Y)—R]
% Thus, if R is chosen slightly smaller than I(X; Y), P(e) decreases to zero

as n increases.

— Now we maximize I(X; Y) by selecting the best input distribution, and obtain the
capacity, C = maXy. [(X; Y).

% Note that the Shannon’s capacity theorem is proved!

©200x Heung-No Lee 11

“Information” Channel Capacity

< C=max,,, [(X;Y)

— The maximum is taken over all input distr. p(x)

“ I(X; Y) is the mutual information between X and Y
— I(X:;Y) = HX) — HX|Y),
---- maximum input-size which causes no equivocation
on X given an output Y

= H(Y) - H(Y[X)
---- maximum output-size which causes no uncertainty
on Y given an input X
— H(X) = Amount of information that can be carried by X
— H(X]Y) = Amount of ambiguity caused by channel noise

©2004 Heung-no Lee 12




Noiseless Binary Channel

< C=max,,, [(X;Y)="?

p(x)

©2004 Heung-no Lee

Binary Symmetric Channel

+» Transmitted bits are flipped with prob. p.
< I(X; Y) =H(Y) - H(Y|X)

=H(Y) - X p(x) H(Y|X=x)

~ H(Y) - H(p)

0
<1-H(p)
1 1

% Equality with uniform X due to
symmetry

<+ C=1-H(p) bits

©2004 Heung-no Lee




Binary Erasure Channel

% A transmitted bit gets lost (no decision)
with probability p. |

I-p
% C=maxI(X;Y)
=max, H(X) - H(X|Y)
/

=max_  H(n) — pH(X|Y =¢)
= max, H(m) — p H(m)
=1- p 1-m

<+ Capacity is achieved if = 1/2.

©200x Heung-no Lee

Capacity of the AWGN channel

% P = Signal Energy per Channel Use
“* N = Noise Energy per Channel Use
¢ The channel C is then given by

C =0.51log2(1 + SNR)
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Gallager’s Thesis (‘62)

%,
@eé

(n, d,, d,) low density parity check code.
» Parity check matrix H [n(1-R) x n] of the code has

— d,number of 1’s in each column

p
4%

— d, number of 1’s in each row
— ThecoderateisR=1-d,/d,

* Min. distance of a typical (n, d,, d.) code for d, > 3
— increases linearly with # for fixedj & &.

2,

*» Practical decoding methods exist
— Simple or probabilistic

o

©200x Heung-No Lee 17

Parity Check Matrix on Bipartite Graph

100100100
010010010 s
00100100 1| |
10001000 1f72
010001100 %
00110001 0t R=1-d,/d,
=123
=173

©200x Heung-No Lee 18




Probabilistic Decoding

%+ Total Probability: If A={A,, A,, ..., A,} is a partition of S
and B is an arbitrary event
Pr{B} = 5"_,Pr{B N A} =X Pr(B | A} Pr{A}
> Bayes’ Theorem: We know

A Pr{A;N B}
Do) A — g
% The posterior is The likelihood x the prior
' Sty Pr(BlA;) Pr(4;)
©200x Heung-No Lee 19

The Iterative Decoding Theorem
The General Case (1)

General Decoding Theorem

1. Get the input probabilities from the channel output y, = (2x, -1)+ ny_n, ~ A0, Ny/(2Ey)).

=1 L. . . .
Let £, élnm—) which is the input to the iterative decoder

. =0
Py X ) P(x1=1ly,S)

2.1 the input via the log ratio of posteri . Z2n for all .
mprove the input via the log ratio of posteriors p; P (x1: oy, S) ora
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Bayes’ Theorem

Pr(zg=1,y,5)

Pr(eq=1ly.5) = T
_ Pr(Sleg=1,y) plxg= 1l.y)
p(y, S)
Pr(Slzg=1,y) Pr(zq = 1ly) p(y)

- p(y. S)

+» The ratio of posteriors is of our interest

P(x =1]y,S) _ P(S|x =Ly)P(x =1]y)
P =0[y.S)  P(S|% =0.9)P(x =1]y)

©200x Heung-No Lee
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The Iterative Decoding Theorem:
The General Case (2)

9 bit nodes
Use f,

p 2P =1Y8) A PG| =Ly,
P(x,=0ly,S) *. P(S|x=0yy

C PGy =11y)
P(x,=0]y)

Similarly, we can update all p,’s.

Pk

Givenp,, 2P(x, :”Y’S):pek—ﬂ , we can find P(S|x, =1y) andP(S|x =0.y) :
€

P(S|x,=Ly)=Pr{odd # of Isinx, and x, } x Pr{odd # of 1s in x; and x,}
= {P4,1(1 -p)+d —p4,1)p7,1} X {pS,l(l —py)+(1- ps.l)p9.1}

This is the general decoding theorem of Gallager.




The Iterative Decoding Theorem:
The General Case (3)

¢+ The log ratio p, has two parts
— Thesignofp, ~ +/-
— The magnitude |p,| ~ reliability of the sign

+» When the channel is BSC(p),

— The magnitude |p,] is infinite
— The sign is in error with probability p.

+» When the channel is BEC(p),

— The magnitude is 0 (erasure) and infinite (sure).
— There are three kinds of signs, 0, 1 or erasure.

©200x Heung-No Lee
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Threshold Phenomenon for AWGN channel

*» There is a certain threshold value associated with a (n, d,,
d,) LDPC code.

P(e)

SNR

©200x Heung-No Lee
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LDPC Codes/Decoding over BSC(p,)

¢ Decoding for Binary Symmetric Channel (p,)
— The probability of bit error: p, '

**» Majority Rule Decoding
“» Threshold Effect
** Density Evolution

©200x Heung-No Lee
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Shannon’s Capacity Theorem

% C=1-H(p,) and R <C for P(e) ~ 0.

% Use the BSC channel # times
n: the block length

— k: the message length

— 1: the number of parities

— n=k+r

— R=k/n

% Then, nR<nC says we should let
— k=n-r<n-nH(p,) or
— r>nH(p,)
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Recall, Simple Decoding Example
(n=9,d =2, d=3)

&

%* Suppose we have
r=[100000000]

@,

<+ Majority Rule decoding:
— If more than or equal to m

checks are violated, flip
the bit.

@,

%+ In this example, let m = 2.
Then, we note, the first
error gets corrected.

4 Let’s consider more
realistic cases.
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Density Evolution
(d,=3,d=4)

*» BSC with cross-over probability p, .

‘The 1st set
dv%— 1 checks

%The 2nd set

% DE is the evolution of error prob. as | 1 tier
iteration increases. 5

1

+«» Majority Rule decoding: ;
iThe 3rd set

— If both checks are unsatisfied, change
the bit.

¢ Assume decoding on a tree (cycle
free graph) which gives the effect

of infinite length n 28
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Density Evolution

o d—1 bits
<> Suppose we start the decoding iteration et &

with the input of bit error probability p,, . IA&
dvf— 1 checks

%* Our aim is to see if the bit error }
probability gets smaller as iterations ~  \ [ \
proceed.

— The first tier calculation involves the first and
the second sets of nodes.

Prob.
of Hrror?

— The 2 tier calculation involves the second

and the third sets of digits (bit nodes). 29
— And so on.
< Each tier calculation in the tree implies a
decoding iteration in the graph.
©200x Heung-No Lee 29
Density Evolution

%+ Now suppose that the red node is in k — 1 bits

error. " The first set
%> Then, each check constraining the red 18t tier j _?1 checks
would be violated if there were even ;
number of errors in the (k-1) digits in K48 288 “The 2nd set
the first set. ’ :
%+ The probability of such an event is 1
'iThe 3rd set

051+ -2pxy @ oo \TT .
— Note ((1- p,) + pot)! -+ ((1- p,) - pH*1,
evaluated at £ = 1, will give the
probability of even 1s.
<+ The error at the red node will be
corrected when both checks are
unsatisfied.
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Density Evolution (2)

¢ Thus, the probability that a digit is received in error at the
first tier, and then corrected after the first iteration is

7 po[g-S(l +(1 - 2p0)k1)]2

e
The red node
was on error Even numl.ae.r of errors Both checks
with this in (k- 1) digits
prob.

% Then, the probability that the red remains in error is

©200x Heung-No Lee 31

Density Evolution (3)

% Now consider the situation when the probability of a digit
is received correctly, but changed due to both checks
violated

(1- p)[0.5(1 — (1 - 2pe)*HR

Received Odd number of Both check
correctly errors in (k-1) bits Ot Checks

©200x Heung-No Lee 32




Density Evolution (4)

“» Now, let’s put them together
%+ A bit error probability at the second set is determined by
= p1=po(1 =[0.5(1 + (1-2pe)*HI?) + (1- p)[0.5(1 = (1-2pp) "
{Error occurred & not corrected} OR {No error & flipped}

** A bit error in the third set is again p, .

» At the end of 2M tier calculation, a bit error in the third set
is determined by

= P2 = po (1 =[0.5(1 + (1-2p ) HI?) + (1- p)[0.5(1 — (1-2p )k
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Density Evolution (5)

*» The error probability of a bit in the (i+1)-th set, obtained at
the end of the i-th tier calculation is

= = Po(1 = [0:5(1+ (129, D) + (1- po)[0-5(1 = (1-2p, )P
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Threshold Behavior

** {p;} converges to anumber 0 < ¢ <1
¢+ We want to find p,,,, := max p, such that c is arbitrarily

small.

@ If py < P then {p;} converges to zero.
¢ If py> Pmax » then {p;} converges to a non-zero positive

constant < 1.

©200x Heung-No Lee 35
{p;} converges to zero if
Po < Pax = 0.0394 for  d,=3, d_=6
Iterative Behavior in Hard Decision [terative Behavior in Hard Decision
006 : 03 g
Start . //E‘fl
0.04L ....... \« i/.j),g.z..o.‘ogga; ,,,,,, i 00k N
F e
L
0,008 fo : / .................................................. 0 b ]
/// E :
‘ y pU=0.0395:§ Start
0 i i 0 s i i
0 0.02 ) 0.04 0.06 0 0.1 0 0.2 0.3
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Examples

Maximum
< Table in the left lists of d, d. Rate  p

maximum p, resulting in 3.6 12 0.039
Proo < le-6. 3 5 2/5 0.061
» Compare the rate 4 codes 3 o4 14 0.106
— d, =4 is the best. 4 8 1/2 0.051
% As the rate decreases, 4 6 173 0.074
Py, iNCrEases. 4 5 15 0.095
5 10 12 0.041
5 3/8 0.056
5 1/6 0.086
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Usage of the Given Analysis

%+ Application of DE to other channels
— Density evolution for AWGN case
— Density evolution for BEC

“* Applications to

— Codc Dcsign (Code ensemble search)
— Decoder Design (Change m as iteration proceeds)
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DE for BEC(p,)

<» When the channel is BEC(p,)
— The magnitude is 0 (erasure) and infinite (sure).

— There are three kinds of signs, 0, 1 or erasure.

“ A check with two erasures are useless (no information)

% A bit node with any check with non erasures is
deterministic.

©200x Heung-No Lee 39

Density Evolution for BEC(p,)

d,

% Let p;, q; denote the probability of erasure, for b2c and c2b directions,
respectively at round i.
<+ b2c: For an erasure b2c output, all inputs to the bit node should be erasures.
P =09
% ¢2b: If any input to the check node is an erasure, then the output is an erasure
too. g,=1-(1-p)*

1

< DE: Pin=D," (1 - (l - D; )dc—l )dv_
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An Optimal Code Ensemble Search

% There is a threshold value p,* for an ensemble of LDPC
codes with fixed d, and d..
- Ifp, <p,’, p; converges to zero.
% They have used it to find the best LDPC code ensembles.

— Application to irregular LDPC code:
« Use auxiliary poly’s.

apax i Fraction of b-nodes with
A(x) = le A, x degree i
i= \-/
agax Fraction of c-nodes with
i—1
P = D px degree i
=1 \_//
" DEisthen p, = p-A(1-p(1-p,))
©200x Heung-No Lee 41

Fountain Code

** A pre-cursor to fountain code I intend to use is an LDPC
code in systematic form.

— Any LDPC code has its systematic form via Gaussian elimination
on H.

Hx={1110100)(m) =0
1011010
1101001

4

Message part Parity part Gm=p
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Fountain Code (2)

< p=Gm where G is a [r x k] binary matrix of 1/0s.

< Can we send the parity vector p over a BEC(p,) and expect
to recover m?
— Some p-bits are erased with prob p,.
— With the non erased p-bits, we can construct p = G,m at Rx.
— Yes, as long as G, has at least k independent rows, G, is full rank.
Thus, r >=k.

Now, the question is to find the redundancy rate r such that P(e) is
very small.

«» Assume G is constructed randomly.

©200x Heung-No Lee 43

Shannon’s Capacity Theorem

% C=1-p,and R <C for P(e) ~ 0.

% Use the BEC(p,) channel # times
Let n the block length
Let k be the message length
— Letr be the number of parities
— n=k+r
- R=k/n
“» Then, nR<nC says we should let

— k=n-r<n-np,or

— r>np,
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I1lustration of Fountain Codes

original genarator metrix

G" at Tx

-> The grey p-bits are
erased in the channel.

3 b ; How big MV has to be, for
' - Gr recovery of m?

Using the LLN, N only needs to be
-~ slightly larger than k.

Random Fountain Codes

% Simple concept of fountain codes

Total size of source file : k x |
Size of each drop .1

Anyone who wants to receive the source file, should hold a bucket under
the fountain and collect k£ + £ drops.




Random Fountain Codes - Decoding

<% In order to find the inverse G,_l, we need at least k&
independent rows in G,.

¢ 1f N=k, what is the probability that a random % x k binary
matrix, G’, is invertible ?

05 &~

I
=

The invertible probability of G'

025

Random Fountain Codes: P(e)

o
.
o

0.3 [

o
w
T

It converges at P=0.289.
- What if N is slight greater than K?




Random Fountain Codes: P(e)

If we add a few redundancy bits, N=k+E, P > 0.

The probability of failure

The number of E, Redundant drop

Random Fountain Codes

“* As k increases, we can show that, a small fraction of E/K is
suffice for near perfect decoding.

“» However, the random fountain codes incur high decoding
and encoding cost.




Random Fountain Codes

¢ Strength
1) Rateless

2) The number of received symbols, N, determined on the
fly.

%> Weakness

High decoding cost because Gaussian Elimination is used
for G, inverse.
— Decoding Cost : k”3 per one symbol

Practical Fountain Codes

% Luby Transform code
— The first practical fountain code
— Uses a sparse graph
— encoding and decoding costs are low

+» Raptor code
— LDPC code + LT code
— Linear encoding and decoding cost
— Most practical
— Will not be discussed today, due to time constraint




Luby Transform codes

% LT code does encoding/decoding, p = Gm, on a sparse G.

Encoding algorithm

1) Generate a number d from a given degree
distribution for a check.

2) Choose d input symbols at random and
connect them to the check

3) Repeat for each check

Luby Transform codes

A
o

Luby Transform code on a sparse graph.

s

» Message bits are not sent; only parity bits are.
# Decode using the message passing algorithm.

% To ensure at least k + E bits be received at Rx, we need to send N > (k + E)/p,
p-bits at Tx.

&

degree d \5/ \!& Erased
FOOOODD » o
k message bits Sent/Received
Not sent
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Luby Transform codes: Decoding

% Decoding algorithm is nothing but the MP algorithm.

% Apply the received p-bits and simplify the graph.

%+ Decoding progresses if there exists at least one degree-one node
at a stage; otherwise, the algorithm gets stuck.

00w

oJoXol

- How to guarantee the all input symbols are covered to the graph?

- How to guarantee the existence of degree one node at each stage?

Luby-Transform codes: Degree Distribution

¢ It needs to strike a balance between the two
objectives.

% The degree distribution should provide
— Coverage: each message bit should be checked at least
once by a p-bit.
» Some connections should be dense for this.
— At least one degree-1 node each stage
» Connections should be sparse for this.




Luby-Transform codes:
Degree Distribution (2)

¢ Luby et. al found the “Soliton distribution.”

The robust Soliton distribution, K=100,s=4
T T T T T T ¢

0.4

J‘ Mostly low degree checks

Fraction  o3s
of
checks

Add a few high degree checks to
ensure coverage

0.254
0.2

0151

0.1} 4
005/ -
;.h‘rm .
0 10 20 30 40 50 60 70 80 90 100
degree
Summary

%> Reviewed a few key results of Shannon and Gallager
leading to Fountain Codes
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Preface

These notes on polar coding are prepared for a tutorial to be given at ISIT 2012.
The notes are based on the author’s paper “Channel polarization: A method for con-
structing capacity-achieving codes for symmetric binary-input memoryless chan-
nels,” published in the July 2009 issue of the IEEE Transactions on Information
Theory. The 2009 paper has been updated to cover two major advances that took
place since the publication of that paper: exponential error bounds for polar codes
and an efficient algorithm for constructing polar codes. Both of these topics are
now an integral part of the core theory of polar coding. In its present form, these
notes present the basic theory of polarization and polar coding in a fairly complete
manner. There have been many more important advances in polar coding in the
few years since the subject appeared: non-binary polarization, source polarization,
multi-terminal polarization, polarization under memory, quantum polar coding, to
name some. Also a large number of papers exist now on practical aspects of polar
coding and their potential for applications. These subjects are not covered in these
notes since the goal has been to present the basic theory within the confines of a
three-hour tutorial.

Ankara, E. Arikan
June 2012
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Chapter 0
Preliminaries and Notation

Abstract This chapter gathers the notation and some basic facts that are used
throughout.

0.1 Notation

We denote random variables (RVs) by upper-case letters, such as X, ¥, and their
realizations (sample values) by the corresponding lower-case letters, such as x, y.
For X a RV, Py denotes the probability assignment on X. For a joint ensemble of
RVs (X,Y), Py,y denotes the joint probability assignment. We use the standard no-
tation /(X;Y), I(X;Y|Z) to denote the mutual information and its conditional form,
respectively.

We use the notation "11V as shorthand for denoting a row vector (ai,...,ay). Given
such a vector a’lV , We write “'11 , 1 <i,j <N, to denote the subvector (a;,...,a;); if
Jj<i, al’ is regarded as void. Given a) and & C {1,...,N}, we write a, to denote
the subvector (g; : i € &7). We write a{ o to denote the subvector with odd indices
(ar : 1 <k < j; kodd). We write a{ e to denote the subvector with even indices
(ak 1< k<j, k even). For example, for a1 (5,4,6,2,1), we have aj = (4,6,2),
a1 .= (4,2),a o = (5,6). The notation 0} is used to denote the all-zero vector.

Code constructions in these notes will be carried out in vector spaces over the
binary field GF(2). Unless specified otherwise, all vectors, matrices, and operations
on them will be over GF(2). In particular, for &, b1]v vectors over GF(2), we write
ailv & bjlv to denote their componentwise mod-2 sum. The Kronecker product of an
m-by-n matrix 4 = [4;;] and an r-by-s matrix B = [B;;] is defined as

ANB - A1,B
A®B=| @ .
Ap1B -+ AmnB



2 0 Preliminaries and Notation

which is an mr-by-ns matrix. The Kronecker power 4" is defined as 4 @ 4201

for all n > 1. We will follow the convention that 40 4 [1].

We write | 27| to denote the number of elements in a set .27. We write 1,/ to denote
the indicator function of a set &7, thus, 1./(x) equals 1 if x € &/ and 0 otherwise.

We use the standard Landau notation O(N), o(N), o(N) to denote the asymptotic
behavior of functions.

Throughout log will denote logarithm to the base 2. The unit for channel capaci-
ties and code rates will be bits.

0.2 Binary Channels and Symmetric Capacity

We write W : 2" — % to denote a generic binary-input discrete memoryless channel
(B-DMC) with input alphabet 2, output alphabet %/, and transition probabilities
W(ylx), x € &, y € #. The input alphabet 2" will always be {0,1}, the output
alphabet and the transition probabilities may be arbitrary. We write W to denote
the channel corresponding to N uses of W; thus, W™ : 2V — &V with wV (yllv |
) =TT, 7 (i | ).

The symmetric capacity of a B-DMC W is defined as

1
5 0g 7 T
Ve xeX sW»[0) + 5w (y1)

)

Since we use base-2 logarithms, /(#) takes values in [0, 1] and is measured in bits.

The symmetric capacity /(W) is the highest rate at which reliable communica-
tion is possible across ¥ using the inputs of /¥ with equal frequency. It equals the
Shannon capacity when W is a symmetric channel, i.e., a channel for which there
exists a permutation 7 of the output alphabet % such that (i) #7!' = & and (ii)
W(y|1) =W (n(y)|0) forally ¢ #.

The binary symmetric channel (BSC) and the binary erasure channel (BEC) are
examples of symmetric channels. A BSC is a B-DMC W with % = {0,1}, W (0|0) =
W(1|1), and W (1|0) = W(0|1). A B-DMC W is called a BEC if for each y € %/,
either W (y|0)W (y|1) = 0 or W(p|0) = W (y|1). In the latter case, y is said to be an
erasure symbol. The sum of W (y|0) over all erasure symbols y is called the erasure
probability of the BEC.

0.3 Channel Bhattacharyya parameter: A measure of reliability

The Bhattacharyya parameter of a B-DMC W is defined as

zZm) 2 Y W)

ye¥w
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The Bhattacharyya parameter Z(W) is an upper bound on the probability of MAP
decision error when W is used only once to transmit a single bit, a-priori equally
likely to be 0 or 1. Hence, Z(W) serves as a measures of reliability for W. It is easy
to see that Z(W) takes values in [0, 1].

Intuitively, one would expect that I(W) ~ 1 iff Z(W) = 0, and I(W) ~ 0 iff
Z(W) = 1. The following bounds make this precise.

Proposition 1 For any B-DMC W, we have

I(W) > log 0.1)

2
1+Z(w)’

IW) <\/1-2(W)2. (0.2)

Furthermore,
IW)+Zw)>1 (0.3)

with equality iff W is a BEC.

Proof of inequality (0.1):
This is proved easily by noting that

log — =
T Zw)

actually equals the channel parameter denoted by Ey(1,Q) by Gallager [6, Sec-
tion 5.6] with Q taken as the uniform input distribution. (This parameter may be
called the symmetric cutoff rate of the channel.) It is well known (and shown in the
same section of [6]) that I(W) > E(1, Q). This proves (0.1).

Proof of inequality (0.2):
For any B-DMC W : & — %, define

Wyl 5 2, [W010) = ().

yEQ/

This is the variational distance between the two distributions W (y|0) and W (y|1)
overye .

Lemma 1 For any B-DMC W, I(W) < d(W).

Proof. Let W be an arbitrary B-DMC with output alphabet # = {1,...,n} and put
P =w(i|0), Qi =W(i|]1),i = 1,...,n. By definition,

) =3

i=

P i
Plog——— 1P + 0l o

1
g—_—
12 2Q1 %JPI+%QI
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The ith bracketed term under the summation is given by

x x+26

A
f(x) —xlogx+5 + (x+20)log 15

where x = min{P;,,0;} and § = %IP, — Qi|- We now consider maximizing f(x) over
0 <x <1-268. We compute

ﬂ: 1 log x(x+20)

dx 2 ° (x+8)

and recognize that \/x(x +28) and (x+ &) are, respectively, the geometric and arith-
metic means of the numbers x and (x+28). So, df/dx < 0 and f(x) is maximized
at x = 0, giving the inequality f(x) < 26. Using this in the expression for (W), we
obtain the claim of the lemma,

109) < 3.3 1P~ 01 =d0w).

Lemma 2 For any B-DMC W, d(W) < \/1—Z(W)2.

Proof. Let W be an arbitrary B-DMC with output alphabet % = {1,...,n} and put
P=W(i0), Qi =W(ill), i=1,...,n. Let & = Y|P —Qif, § £ d(W) = X1, &,
and R; £ (P +Qi)/2. Then, we have Z(W) = Y1, \/(Ri — &) (Ri+ 6;). Clearly,
Z(W) is upper-bounded by the maximum of 7| \/R? — 67 over {§;} subject to
the constraints that 0 < § < R;, i = 1,...,n, and X} | 6 = 8. To carry out this
maximization, we compute the partial derivatives of Z(W) with respect to J;,

oz 5; A R?

% fe-g % wle—e

and observe that Z(W) is a decreasing, concave function of §; for each i, within

the range 0 < §; < R;. The maximum occurs at the solution of the set of equations

0Z/d8; = k, all i, where k is a constant, i.e., at & = R;\/k2/(1+k2). Using the

constraint 3; & = & and the fact that Y7, R; = 1, we find \/42/(1 +42) = §. So,

the maximum occurs at §; = §R; and has the value 37, /R? — §2R? = /1 — 82

We have thus shown that Z(W) < y/1 —d(W)2, which is equivalent to d(W) <
1—Z(W)2.

From the above two lemmas, the proof of (0.2) is immediate.
Proof of inequality (0.3). We defer this proof until Chapter 3 where it will follow
as a simple corollary to the results there.



0.3 Channel Bhattacharyya parameter: A measure of reliability 5

It can be seen that inequality 0.3 is stronger than inequality 0.1 and will prove
useful later on. The weaker inequality (0.1) is sufficient to develop the polarization
results for the time being.






Chapter 1
Overview of Results

Abstract Shannon proved the achievability part of his noisy channel coding theorem
using a random-coding argument which showed the existence of capacity-achieving
code sequences without exhibiting any specific sequence [15]. Polar codes are an ex-
plicit construction that provably achieves channel capacity with low-complexity en-
coding, decoding, and code construction algorithms. This chapter gives an overview
of channel polarization and polar coding.

1.1 Channel polarization

Channel polarization is a transformation by which one manufactures out of N inde-
pendent copies of a given B-DMC I a second set of N channels {W,\(; )11 <i<N}
such that, as N becomes large, the symmetric capacity terms {/ (W,S,l) )} tend towards

0 or 1 for all but a vanishing fraction of indices i. The channel polarization operation
consists of a channel combining phase and a channel splitting phase.

1.1.1 Channel combining

This phase combines copies of a given B-DMC W in a recursive manner to produce
a vector channel Wy : 2V — &V where N can be any power of two, N = 2", n > 0.
The recursion begins at the 0-th level (» = 0) with only one copy of W and we set

W 2 . The first level (n = 1) of the recursion combines two independent copies
of W, as shown in Fig. 1 and obtains the channel #, : 22 — #? with the transition
probabilities

Wa(y1,y2lur,uz) = W(yiluy ©u)W(yaluz). (1.1)
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Ui X1 Y1

D
@
I

uy X2 )2

W
Fig. 1.1 The channel ;.

The next level of the recursion is shown in Fig. 2 where two independent copies
of W, are combined to create the channel W, : 24 — %* with transition probabili-
ties W4(y‘1‘|u‘1‘) = VVz(yﬂm D uy,uz O u4)%01§[u2,u4).

u D ___ V1 a2 W 4|
& &
uz V2 X2 W )2
\ /
N/
\ 7/
X W2
/\
/ N\
/ \ ,
u3 m\ V3 X3 W )3
U AU
Uy o V4 X4 W Y4
R4 W2

Wa

Fig. 1.2 The channel W, and its relation to W, and W.

In Fig. 2, R4 is the permutation operation that maps an input (sy,s2,53,54) to
v} = (s1,53,52,54). The mapping u} + x{ from the input of 7 to the input of #* can
1000
be written as x} = u} G4 with G4 = i (}’ (i) ?J . Thus, we have the relation W, (v} |u}) =
W4 (y}|u}G4) between the transition probabilities of ¥4 and those of W4.

The general form of the recursion is shown in Fig. 3 where two independent
copies of Wy, are combined to produce the channel Wy. The input vector u¥ to
Wy is first transformed into szlv so that sp; | = up;_ 1 Pup;and sp; = up; for 1 <i <
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uy a~ S V1 i
() N
up 82 ] Y2
Wy o
S —
uy/2-1 poli VN/2-1 Ynj2-1
Ko—
Un/2 I SN/2 VN/2 YN/2
Ry
N
UN/2+1 plas VN/2+1 YN/2+1
\g
UN/2+2 VN/2+2 YN/2+2
SN/j2+2
: Wy 2
UN_| ,\SN*I VN_1 YN-1
U
uy SN VN L YN
Wy

Fig. 1.3 Recursive construction of Wy from two copies of Wy ».

N/2. The operator Ry in the figure is a permutation, known as the reverse shuffle
operation, and acts on its input S]]VtO produce vllv = (81,53, s SN—1,52,54, - ;SN )»
which becomes the input to the two copies of Wy, as shown in the figure.

We observe that the mapping ullv — vllv is linear over GF(2). It follows by induc-
tion that the overall mapping u’l‘/ + x/, from the input of the synthesized channel
Wy to the input of the underlying raw channels W7 | is also linear and may be repre-
sented by a matrix Gy so that x11V = ullv Gy. We call Gy the generator matrix of size
N. The transition probabilities of the two channels Wy and " are related by

O | ) = WN (Y [u) Gy) (1.2)

for all yY € &V, ul € Z'N. We will show in Sect. 5.1 that Gy equals ByF®" for

any N = 2", n > 0, where By is a permutation matrix known as bit-reversal and

F2 [ ! (1)] . Note that the channel combining operation is fully specified by the matrix

F. Also note that Gy and F®" have the same set of rows, but in a different (bit-
reversed) order; we will discuss this topic more fully in Sect. 5.1.



10 1 Overview of Results

1.1.2 Channel splitting

Having synthesized the vector channel Wy out of W”, the next step of channel
polarization is to split Wy back into a set of N binary-input coordinate channels

W]\(/i) X SN x 11 <i< N, defined by the transition probabilities

1

. N 4 i
W}\(/’)(Vllvv”1l|ui): > WWNMIuV), (1.3)

N "N—i
Uy €EZ

where (v),4/7!) denotes the output of st,i) and u; its input.

To gain an intuitive understanding of the channels {Wlf,i) }, consider a genie-aided
successive cancellation decoder in which th(_e ith decision element estimates u; after
observing y’lv and the past channel inputs u’fl (supplied correctly by the genie re-
gardless of any decision errors at earlier stages). If z/lv is a-priori uniform on 2V,

then I, A(,i) is the effective channel seen by the ith decision element in this scenario.

1.1.3 Channel polarization

Theorem 1 For any B-DMC W, the channels {W}\(/i)} polarize in the sense that, for
any fixed 8 € (0,1), as N goes to infinity through powers of two, the fraction of

indices i € {1,...,N} for which I(Wl\(,i)) € (1 —6,1] goes to [(W) and the fraction
Jor which ](W,ﬁ,l)) €[0,6) goesto 1 —I(W).

This theorem is proved in Sect. 3.3.

The polarization effect is illustrated in Fig. 4 for W a BEC with erasure prob-

ability € = 0.5. The numbers {7 (W]g))} have been computed using the recursive
relations

1m0y = 10wy,
. . . (1.4
107) = 20(003)) = 10),)2,
with / (Wl(l)) = 1 — €. This recursion is valid only for BECs and it is proved in
Sect. 2.2. Figure 4 shows that / (W(i) ) tends to be near O for small i and near 1 for
large i. However, / (W,s,' ) ) shows an erratic behavior for an intermediate range of i.
For general B-DMC:s, the calculation of / (Wj\(,i)) with sufficient degree of preci-
sion is an important problem for constructing polar codes. This issue is discussed in
Sect. 5.3.
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Fig. 1.4 Plot of I(W\") vs.i=1,...,N =2'° for a BEC with & = 0.5.

1.1.4 Rate of polarization

For proving coding theorems, the speed with which the polarization eftect takes hold
as a function of N is important. Our main result in this regard is given in terms of
the parameters

zwih=3 3% \/WA(,)(yN w1 0) i O 1 ). (1.5)

)‘}IVE@/Nu' legi-1

Theorem 2 Let W be a B-DMC. For any fixed rate R < I(W) and constant 3 < %,
there exists a sequence of sets { </} such that /v C {1,...,N}, |e/| > NR, and

i _NB
Sz = o2V, (1.6)
ey
Conversely, if R > 0 and B > %, then for any sequence of sets { e/} with oy C
{1,...,N}, |@| > NR, we have
max{Z(WA(,i)) tie gy} =co(2_Nﬁ). (1.7

This theorem is proved in Chapter 3. .
We stated the polarization result in Theorem 2 in terms {Z (WZS,I))} rather than
{1 (WJS,'))} because this form is better suited to the coding results that we will de-
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velop. A rate of polarization result in terms of {/ (W1S,' ))} can be obtained from The-
orem 2 with the help of Prop. 1.

1.2 Polar coding

Polar coding is a method that takes advantage of the polarization effect to construct
codes that achieve the symmetric channel capacity 7(#). The basic idea of polar
coding is to create a coding system where one can access each coordinate channel

W,S,i) individually and send data only through those for which Z (W]\(,i)) is near 0.

1.2.1 Gy-coset codes

We first describe a class of block codes that contain polar codes—the codes of main
interest—as a special case. The block-lengths NV for this class are restricted to pow-
ers of two, N = 2" for some n > 0. For a given NV, each code in the class is encoded
in the same manner, namely,

o =u)Gy (1.8)

where Gy is the generator matrix of order N, defined above. For &/ an arbitrary
subset of {1,..., N}, we may write (1.8) as

X =ty G () D th e G () (1.9)

where Gy () denotes the submatrix of Gy formed by the rows with indices in 27

If we now fix &/ and u ., but leave u,, as a free variable, we obtain a map-
ping from source blocks ., to codeword blocks lev . This mapping is a coset code:
it is a coset of the linear block code with generator matrix Gy (%), with the coset
determined by the fixed vector u Gy (2/¢). We will refer to this class of codes
collectively as Gy-coset codes. Individual Gy-coset codes will be identified by a
parameter vector (N,K,.o/ ,ugc), where K is the code dimension and specifies the
size of &/.! The ratio K/N is called the code rate. We will refer to .« as the infor-
mation set and to u e € V=K as frozen bits or vector.

For example, the (4,2,{2,4},(1,0)) code has the encoder mapping

x} = ulG,

1000]. (1.10)

1010
= (2, 4) {1 11 1J+(1’O> [1 100

! We include the redundant parameter K in the parameter set because often we consider an ensem-
ble of codes with X fixed and o7 free.
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For a source block (uz,u4) = (1,1), the coded block is x} = (1,1,0,1).
Polar codes will be specified shortly by giving a particular rule for the selection
of the information set .o7.

1.2.2 A successive cancellation decoder

Consider a Gy-coset code with parameter (N,K, .o, uzc). Let L/]V be encoded into
a codeword lev , let x{v be sent over the channel WV, and let a channel output yllV be
received. The decoder’s task is to generate an estimate 12]1\’ of ujlv , given knowledge
of o7, uge, and yY. Since the decoder can avoid errors in the frozen part by setting
Ul e = Uy, the real decoding task is to generate an estimate #,, of uy.

The coding results in this paper will be given with respect to a specific succes-
sive cancellation (SC) decoder, unless some other decoder is mentioned. Given any
(N,K, o ,ugye) Gy-coset code, we will use a SC decoder that generates its decision
L‘/IV by computing

A | u, ifi e /¢
Uu; = .
O mGRAY, ifieo

in the order i from 1 to N, where h; : N x 21 — &, i € o, are decision func-
tions defined as

(1.11)

o O a1)0)
0, if ALl > 1
WY (1.12)
1, otherwise

e A
hi(y[lvﬁull 1) =

for all y) € &V, #i~! € 271, We will say that a decoder block error occurred if
ﬁ}l" #* u]1V or equivalently if &,/ £ uy.

The decision functions {4;} defined above resemble ML decision functions but
are not exactly so, because they treat the firture frozen bits (u; : j > i, j € &/€) as
RVs, rather than as known bits. In exchange for this suboptimality, {#;} can be com-
puted efficiently using recursive formulas, as we will show in Sect. 2.1. Apart from
algorithmic efficiency, the recursive structure of the decision functions is important
because it renders the performance analysis of the decoder tractable. Fortunately,
the loss in performance due to not using true ML decision functions happens to be
negligible: I(W) is still achievable.

1.2.3 Code performance

The notation P.(N,K, o7 ,ugc) will denote the probability of block error for a
(N,K, o ,uyc) code, assuming that each data vector u,, € 2K is sent with proba-



14 1 Overview of Results

bility 27X and decoding is done by the above SC decoder. More precisely,

PNK, o uge) =Y LK D Wy O [u)).

uy ek 2 Wea Nl o)Al

The average of P,(N,K, < ,uzc) over all choices for u,. will be denoted by
P.N,K,):

1

A
Pe(NyK)M): 2 21\/__'[{"

Ugrc € ZN-K

PN, K, uye).

A key bound on block error probability under SC decoding is the following.
Proposition 2 For any B-DMC W and any choice of the parameters (N, K, ),

PNK, )< Y Z0WY). (1.13)
iceof

Hence, for each (N,K, <), there exists a frozen vector u e such that

PNK, o yuge) < 3 Z(W)). (1.14)
icd

This is proved in Sect. 4.3. This result suggests choosing </ from among all K-
subsets of {1,...,N} so as to minimize the RHS of (1.13). This idea leads to the
definition of polar codes.

1.2.4 Polar codes

Given a B-DMC W, a Gy-coset code with parameter (N, Ko7 ,u ) will be called
a polar code for W if the information set </ is chosen as a K-element subset of
{1,...,N} such thatZ(WA(,l)) < Z(WA(/)) forallie &, j € /°.

Polar codes are channel-specific designs: a polar code for one channel may not
be a polar code for another. The main result of this paper will be to show that polar
coding achieves the symmetric capacity /(W) of any given B-DMC .

An alternative rule for polar code definition would be to specify &/ as a K-
element subset of {1,...,N} such that I(W]E,')) > I(WI(VJ)) forallie o, j e o/°.
This alternative rule would also achieve /(). However, the rule based on the Bhat-
tacharyya parameters has the advantage of being connected with an explicit bound
on block error probability.

The polar code definition does not specify how the frozen vector u 4« is to be cho-
sen; it may be chosen at will. This degree of freedom in the choice of uc simplifies
the performance analysis of polar codes by allowing averaging over an ensemble.
However, it is not for analytical convenience alone that we do not specify a precise
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rule for selecting u ¢, but also because it appears that the code performance is rel-
atively insensitive to that choice. In fact, we prove in Sect. 4.6 that, for symmetric
channels, any choice for u . is as good as any other.

1.2.5 Coding theorems

Fix a B-DMC W and a number R > 0. Let P,(N,R) be defined as P.(N, |[NR], <)
with o7 selected in accordance with the polar coding rule for . Thus, P.(N,R)
is the probability of block error under SC decoding for polar coding over W with
block-length N and rate R, averaged over all choices for the frozen bits u .. The
main coding result of this paper is the following:

Theorem 3 For polar coding on a B-DMC W at any fixed rate R < I(W), and any
Sfixed B < %

P.(N,R) = 0(2~). (1.15)

This theorem follows as an easy corollary to Theorem 2 and the bound (1.13),
as we show in Sect. 4.3. For symmetric channels, we have the following stronger
version of Theorem 3.

Theorem 4 For any symmetric B-DMC W, any fixed B < % and any fixed R <
I(W), consider any sequence of Gy-coset codes (N,K, o/ ,uqe) with N increasing
to infinity, K = |NR|, o/ chosen in accordance with the polar coding rule for W,
and u e fixed arbitrarily. The block error probability under successive cancellation
decoding satisfies

P.N,K, o ,uge) = 0(27M). (1.16)

This is proved in Sect. 4.6. Note that for symmetric channels /(W) equals the
Shannon capacity of W.

1.2.6 A numerical example

The above results establish that polar codes achieve the symmetric capacity asymp-
totically. It is of interest to understand how quickly the polarization effect takes hold
and what performance can be expected of polar codes under SC decoding in the non-
asymptotic regime. To shed some light on this question, we give here a numerical
example.

Let W be a BEC with erasure probability 1/2. For the BEC, there are exact formu-

las for computing the parameters Z (W]\(,i)), unlike other channels where this is a diffi-
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cult problem. Figure 7 shows the rate vs. reliability trade-off for W using polar codes
with block-lengths N € {219,215 220} This figure is obtained by using codes whose

information sets are of the form 27 (n) 4 {ie{l,...,N}: Z(WI\(,i)) < 1}, where
0 <n <1 is a variable threshold parameter. There are two sets of three curves in

the plot. The solid lines are plots of R(1) 4 |7 (n)|/N vs.B(n) 4 Yiea(n) Z(W]\(,i)).

The dashed lines are plots of R(n) vs. L(n) 4 maxieﬂ(ﬁ){Z(W]\(,i))}. The parameter
7 is varied over a subset of [0, 1] to obtain the curves.

Bounds on probability of block error

10"10 ¥ . 1
0.15 . 0.25 0.3
Rate (bits)

Fig. 1.5 Rate vs. reliability for polar coding and SC decoding at block-lengths 2!°, 213 and 22° on
a BEC with erasure probability 1/2.

The parameter R(n) corresponds to the code rate. The significance of B(n) is
also clear: it is an upper-bound on P.(7), the probability of block-error for polar
coding at rate R(1)) under SC decoding. The parameter (7)) is intended to serve as
a lower bound to P,(n).

This example provides some empirical evidence that polar coding achieves chan-
nel capacity as the block-length is increased—a fact that will be established by exact
proofs in the following. The example also shows that the rate of polarization is quite
slow, limiting the practical impact of polar codes.

1.2.7 Complexity

An important issue about polar coding is the complexity of encoding, decoding, and
code construction. The recursive structure of the channel polarization construction
leads to low-complexity encoding and decoding algorithms for the class of Gy-coset
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codes, and in particular, for polar codes. The computational model we use in stating
the following complexity results is a single CPU with a random access memory.

Theorem 5 For the class of Gy-coset codes, the complexity of encoding and the
complexity of successive cancellation decoding are both O(NlogN) as functions of
code block-length N.

This theorem is proved in Sections 5.1 and 5.2. Notice that the complexity bounds
in Theorem 5 are independent of the code rate and the way the frozen vector is
chosen. The bounds hold even at rates above I(¥), but clearly this has no practical
significance.

In general, no exact method is known for polar code construction that is of poly-
nomial complexity. One exception is the case of a BEC for which we have a polar
code construction algorithm with complexity O(N). However, there exist approxi-
mation algorithms for constructing polar codes that have proven effective for prac-
tical purposes. These algorithms and their complexity will be discussed in Sect. 5.3.

1.3 Relations to Reed-Muller codes

Polar coding has much in common with Reed-Muller (RM) coding [11], [14]. Ac-
cording to one construction of RM codes, for any N=2",n>0,and 0 < K <N,
an RM code with block-length N and dimension K, denoted RM(N, K), is defined
as a linear code whose generator matrix Gruy(N,K) is obtained by deleting (N — K)
of the rows of F®" so that none of the deleted rows has a larger Hamming weight
(number of 1s in that row) than any of the remaining K rows. For instance,

22 _[1700
Grni(4,4) = F =[}010}
1111
and

This construction brings out the similarities between RM codes and polar codes.
Since Gy and F&" have the same set of rows for any N = 2", it is clear that RM
codes belong to the class of Gy-coset codes. For example, RM(4,2) is the G4-coset
code with parameter (4,2,{2,4},(0,0)). So, RM coding and polar coding may be
regarded as two alternative rules for selecting the information set o7 of a Gy-coset
code of a given size (N, K). Unlike polar coding, RM coding selects the information
set in a channel-independent manner; it is not as fine-tuned to the channel polariza-
tion phenomenon as polar coding is. It is shown in [1] that, at least for the class of
BECs, the RM rule for information set selection leads to asymptotically unreliable
codes under SC decoding. So, polar coding goes beyond RM coding in a non-trivial
manner by paying closer attention to channel polarization. However, it is an open
question whether RM codes fail to achieve channel capacity under ML decoding.



18 1 Overview of Results

Another connection to existing work can be established by noting that polar codes
are multi-level |u|u 4 v| codes, which are a class of codes originating from Plotkin’s
method for code combining [13]. This connection is not surprising in view of the
fact that RM codes are also multi-level |u|u + v| codes [9, pp. 114-125]. However,
unlike typical multi-level code constructions where one begins with specific small
codes to build larger ones, in polar coding the multi-level code is obtained by expur-
gating rows of a full-order generator matrix, Gy, with respect to a channel-specific
criterion. The special structure of Gy ensures that, no matter how expurgation is
done, the resulting code is a multi-level |u|u + v| code. In essence, polar coding en-
joys the freedom to pick a multi-level code from an ensemble of such codes so as
to suit the channel at hand, while conventional approaches to multi-level coding do
not have this degree of flexibility.

1.4 Outline of the rest of notes

The rest of the notes is organized as follows. Chapter 2 examines the basic channel
combining and splitting operation in detail, in particular, the recursive nature of that
transform. In Chapter 3, we develop the main polarization result. In Chapter 4, we
investigate the performance of polar codes and complete the proofs of polar coding
theorems. Chapter 5 we discuss the complexity of the polar coding algorithms.



Chapter 2
Channel Transformation

Abstract This chapter describes the basic channel transformation operation and in-
vestigates the way I(W) and Z (W) get modified under this basic transformation. The
basic transformation shows the first traces of polarization. The asymptotic analysis
of polarization is left to the next chapter.

2.1 Recursive channel transformations

We have defined a blockwise channel combining and splitting operation by (1.2) and

(1.3) which transformed N independent copies of ¥ into W(l), cees W[\(,N). The goal
in this section is to show that this blockwise channel transformation can be broken
recursively into single-step channel transformations.

We say that a pair of binary-input channels W’ : 2 — % and W' : % % x X
are obtained by a single-step transformation of two independent copies of a binary-
input channel W : " — % and write

W,W)— (W' w")

iff there exists a one-to-one mapping f : %2 — % such that
1
W' (fy1,2)|ur) =Z§W(yl|u1@u’2)W(yz|u’2), @2.1)
)

W' (f1,y2),utluz) = %W()ﬁ |ty @ uz) W (y2|u2) (2.2)

foralluj,up € Z,y1,y, € ¥.
According to this, we can write (W, W) — (Wz(l) , Wz(z) ) for any given B-DMC W
because

19
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) (R ) 2 z W33 1)

_Z W(yiluy @ ua)W (y2|ua), (2.3)

uz
A
w2 (53wt |uz) & EWz(V%Iu:f')
1
= EW(yllul ® ua)W (y2|u2), (2.4)

which are in the form of (2.1) and (2.2) by taking f as the identity mapping.
It turns out we can write, more generally,

i 2i—1 2i
() = iy~ 2.5)
This follows as a corollary to the following:
Proposition 3 Foranyn >0, N=2"1<i<N\,

(2i=1), 2N  2i-2
Won 1 ,”1 uzi—1) =

Z WN ()’Nulo @”1e 2|ugi1 ® uy)W, )(J’NH,M]ezluzz) (2.6)

llz,

and

2
Wz( i) 2 7ult 1|u21)_

EWI\(; VN ”10 @ulg |U21 I@MZz)WN (VN+1au192|”2:) 2.7

This proposition is proved in the Appendix. The transform relationship (2.5) can
now be justified by noting that (2.6) and (2.7) are identical in form to (2.1) and (2.2),
respectively, after the following substitutions:

w—w), Wi,
2
WZ(NI), Uy ugi-1,
, N -2
up < uy;, y1<—() ulo @ le )7
)’2<—(,VN+17ule ) Siy2) < 1 a“%l 2)‘

Thus, we have shown that the blockwise channel transformation from W% to
( WA(,I), ooy W,\(,N)) breaks at a local level into single-step channel transformations
of the form (2.5). The full set of such transformations form a fabric as shown in
Fig. 5 for N = 8. Reading from right to left, the figure starts with four copies of

the transformation (W, W) — (W( ) W(2) ) and continues in butterfly patterns, each
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w D D D ”
WS(S) W;f:;) W2(2) W
w W 0 w

w
<
S
)
I
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» =

SN
*
PN
=
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Fig. 2.1 The channel transformation process with N = 8 channels.

representing a channel transformation of the form (Wz(,j ), W2(,J )) — (Wz(,.ijl_l), Wz(,.%rjl)).
The two channels at the right end-points of the butterflies are always identical and
independent. At the rightmost level there are 8 independent copies of ¥; at the next
level to the left, there are 4 independent copies of Wz(l) and Wz(z) each; and so on.
Each step to the left doubles the number of channel types, but halves the number of

independent copies.

2.2 Transformation of rate and reliability

We now investigate how the rate and reliability parameters, / (Wls,i)) and Z (W]E,i)),
change through a local (single-step) transformation (2.5). By understanding the lo-
cal behavior, we will be able to reach conclusions about the overall transformation

from WV to (WI\(,I)7 ey W]\(,N)). Proofs of the results in this section are given in the
Appendix.
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2.2.1 Local transformation of rate and reliability

Proposition 4 Suppose (W, W) — (W' ,W") for some set of binary-input channels.
Then,

1" +1(w")
o)

20(W), (2.8)
I(w") (2.9)

IA

with equality iff (W) equals 0 or 1.

The equality (2.8) indicates that the single-step channel transform preserves the
symmetric capacity. The inequality (2.9) together with (2.8) implies that the sym-
metric capacity remains unchanged under a single-step transform, I(W') = I(W") =
I(W),iff W is either a perfect channel or a completely noisy one. If W is neither per-
fect nor completely noisy, the single-step transform moves the symmetric capacity
away from the center in the sense that I/(W') < I(W) < I(W"), thus helping polar-
ization.

Proposition 5 Suppose (W, W) — (W' ,W") for some set of binary-input channels.

Then,
ZW") =2Z(W)?, (2.10)
Z(W') <2Z(W)—Z(W)?, (2.11)
zZw'y>zw)>zw"). (2.12)

Equality holds in (2.11) iff W is a BEC. We have Z(W') = Z(W") iff Z(W) equals 0
or 1, or equivalently, iff (W) equals 1 or 0.

This result shows that reliability can only improve under a single-step channel
transform in the sense that

ZW'+2Z(W") <2Z(W) (2.13)

with equality iff ' is a BEC.
Since the BEC plays a special role w.r.t. extremal behavior of reliability, it de-
serves special attention.

Proposition 6 Consider the channel transformation (W, W) — (W' \W"). If W is a
BEC with some erasure probability €, then the channels W' and W' are BECs with
erasure probabilities 2€ — €% and €2, respectively. Conversely, if W' orW" is a BEC,
then W is BEC.

2.2.2 Rate and reliability for W,

We now return to the context at the end of Sect. 2.1.
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Proposition 7 For any B-DMC W, N =2", n > 0, 1 <i < N, the transformation
(WA(,I),W]\(;)) — (WZ(]%,FI)7 WZ(]%,I)) is rate-preserving and reliability-improving in the
sense that

W)+ 173)) = 210m)), (2.14)
zZm- ”>+Z<W§§’>>szz<W]6">, 2.15)

with equality in (2.15) iff W is a BEC. Channel splitting moves the rate and relia-
bility away from the center in the sense that

UA R (ADES (A (2.16)
AUA W/ AL DA Al 2.17)

with equality in (2.16) and (2.17) iff (W) equals 0 or 1. The reliability terms further
satisfy

zmyy V) <2z(my)) — Z(w) 2, (2.18)
zm3) =z )2, (2.19)
zry)) < zmy <z ), (2.20)

with equality in (2.18) iff W is a BEC and with equality on either side of (2.20) iff
I(W) is either 0 or 1. The cumulative rate and reliability satisfy

S 1wy = N1(w), 2.21)
N
S 2wy < Nz(w), (2.22)

with equality in (2.22) iff W is a BEC.

This result follows from Prop. 4 and Prop. 5 as a special case and no separate
proof is needed. The cumulative relations (2.21) and (2.22) follow by repeated ap-
plication of (2.14) and (2.15), respectively. The conditions for equality in Prop. 4
are stated in terms of W rather than W(i) this is possible because: (i) by Prop. 4,

) € {0,1} iff I(Wy’) € {0,1}; and (ii) W is a BEC iff WA(,') is a BEC, which
follows from Prop. 6 by induction.

For the special case that W is a BEC with an erasure probability &, it follows

from Prop. 4 and Prop. 6 that the parameters {Z (WA(,") )} can be computed through
the recursion

EFAUATNS

- .
Z(W]\(fzj )) — 2Z(W(j) N2

N/2

2P = 2w,

(2.23)
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with Z(Wl(l) ) = €. The parameter Z (st,j)) equals the erasure probability of the
channel W,S,l). The recursive relations (1.4) follow from (2.23) by the fact that
1wy = 1—2z(w") for W a BEC.

Appendix

2.3 Proof of Proposition 3

To prove (2.6), we write

1
2i—1
W(‘ ) %N’u%z 2|u2i_1) z T WZN(yzN'uzN)

21

1
= Y WN()/N‘ulo@ule)WN(ylz\/]illu e)
u210’”21€
1
=Z Z N 1WN(,VN+1|”%{Z) > WWNO’?[W%@U%- (2.24)
”21 uZH le H%ﬁ-l,o

By definition (1.3), the sum over u%ﬁw for any fixed u%/\e’ equals
Wy 07 2 @l 2 gy D),

because, as u3), | , ranges over 2V, 5N | 0® usY, | , ranges also over 2V~ We
now factor this term out of the middle sum in (2.24) and use (1.3) again to obtain
(2.6). For the proof of (2.7), we write

1

@ ON|, 2N

W AN 12 ) = 2 st Wan 0 i)
”21+1

1 1 N |, 2N 1 ON . 2N
=5 2 syt WwONlure) Y == Wy () i ®ui’y).
2 w2 a2
Y1 e Wit1,0
By carrying out the inner and outer sums in the same manner as in the proof of (2.6),

we obtain (2.7).

2.4 Proof of Proposition 4

Let us specify the channels as follows: W : 2 — &, W' : 2 — ¥, and W" :
Z — ¥ x 2. By hypothesis there is a one-to-one function f: % — % such
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that (2.1) and (2.2) are satisfied. For the proof it is helpful to define an ensemble
of RVs (Uy,Us,X),X5,11,Y5,Y) so that the pair (Uy,U,) is uniformly distributed
over 22, (X1,%2) = (U1 ® Uy, Ua), Py, vy 1.0 V15 02161,%2) = W (y1 [x1) W (12 x2),
and ¥ = £(11,Y2). We now have

W' (lu1) = Py, (Flun)
W (7, uru2) = Pyyy, u, w1 [u2).

From these and the fact that (¥},Y>) > ¥ is invertible, we get

(W) =1(U;Y) =1(U;; 11 Ya),
(") =1(Up; YUy) = I(Up; i UY).

Since U and U, are independent, I(Uz,YleUl) equals I(Up; 11 12|Uh). So, by the
chain rule, we have

IWY+IW") = (U U1 1) = 1(X X051 T5)

where the second equality is due to the one-to-one relationship between (X1,X3)
and (U;,U,). The proof of (2.8) is completed by noting that I(X;X3;Y1Y>) equals
I(X1; Y1) +1(Xa;Y2) which in turn equals 27(W).

To prove (2.9), we begin by noting that

I(W") = I(U; h 12U )

(Up 1) +1(Ua; 11U | T2)
( )+[(U2;Y1U1 ‘Yz).

1
1

This shows that I(W") > I(W). This and (2.8) give (2.9). The above proof shows
that equality holds in (2.9) iff I(U,; Y1 U; |Y2) = 0, which is equivalent to having

Py, iy v (1,42, 31192) = Py v, (w101 192) Py y, (42v2)
for all (uy,u2,y1,y2) such that Py, (y2) > 0, or equivalently,

Py 10y 0 W1s320u1,u2) Pr, (v2) = Py, vy (v, (01,021u1 ) Pry v, (V2| u2) (2.25)

forall (u1,u2,91,02). Since Py, v, v, v, 01,2 |u1,u2) = W (y1 |ty Su2) W (y2|u2), eq. (2.25)
can be written as

W (y2lu2) (W (01|ur @ u2) Py, (v2) — Pr, v, (01,32 |u1)] = 0. (2.26)

Substituting Py, (v2) = %W(y2|u2) + %W(yzluz @ 1) and

1 1
Py, nio, 01,02lu) = EW()’I |1 @ u2) W (2 |uz) + EW(yl 1 @uy L)W (y2lup, ® 1)
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into (2.26) and simplifying, we obtain
W (v2|u2)W (yalua @ 1) [ (y1 |uy @ u2) = W (y1uy @ua ®1)] =0,
which for all four possible values of (u],u2) is equivalent to
W (2[00 (»2[1) [ (3110) — W (31[1)] = 0.

Thus, either there exists no y, such that W(y,|0)W (y2|1) > 0, in which case I(W) =
1, or for all y; we have W (y,]0) = W(y;|1), which implies /(W) = 0.

2.5 Proof of Proposition 5

Proof of (2.10) is straightforward.

zw") IyZZ VI (f(r1,2),110) VW' (f(p1,2),u1]1)

= 3 VIO a0 [0) VWG Tar G U0 1)

¥

=SV 00211 35 ST a0 W0 [a @ 1)
Y2 Y1

uj

=Z(W)>2.

To prove (2.11), we put for shorthand o(y1) = W()110), (1) = W(»i|1),
B(»2) = W(1210), and y(y2) = W (y,|1), and write

ZW) =3 VW (L)) W (f(r1,52)]1)
y2

1

= ;;%munﬁ(m TS00702) A7) T S01B0)

1

<33 [VainB) + 8oy | [Vatmis) + VEuBea)|
7

*g,\/a(yl)ﬁ(yz)&m)}’(yz)

where the inequality follows from the identity

(VB T 8n(ars 6B)] +2/aBoy (Va-Var(VB - V7P
= [(VaB + Ve (va7+/3b) - 2/ab5y]
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Next, we note that

%a()’l) B2)y(n) =2W).

Likewise, each term obtained by expanding

(Vean)B02) + V) Yr)) (v ab)r(y2) +v/6(1)B02))

gives Z(W) when summed over y2. Also, \/o(y1)B(»2) 8(v1) ¥(»2) summed over y?
equals Z(W)?. Combining these, we obtain the claim (2.11). Equality holds in (2.11)
iff, for any choice of 2, one of the following is true: a(y1) B (2 ¥(y2)8(y1) =0 or
o(y1) = 6(y1) or B(v2) = y(»2). This is satisfied if W is a BEC. Conversely, if we
take y; = yp, we see that for equality in (2.11), we must have, for any choice of
y1, either a(y1)6(y1) =0 or a(y;) = 8(y1); this is equivalent to saying that /¥ is a
BEC.

To prove (2.12), we need the following result which states that the parameter
Z(W) is a convex function of the channel transition probabilities.

Lemma 3 Given any collection of B-DMCs W;: Z — %, j € ¢, and a probability
distributionQ on 7, defineW : ' — ¥ as the channel W (y|x) =3 ;c 7 O(J)W;(y|x).
Then,

Y 0U)Zwy) < z(w). (2.27)
jes

Proof. This follows by first rewriting Z(W) in a different form and then applying
Minkowsky’s inequality [6, p. 524, ineq. (h)].

20w) = XV WOOW O
y l ,
——1+1Y [ng(ym]

y
S 33 ou) [gx/%w)r

= 3 0)ZW)).
jes

We now write W' as the mixture

W (nya)la) = 5 D03 (1) + Wi (R )]

where

Wo(vilur) = W (1 |u )W (y2]0),
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ML) = W(yilm © I (1),
and apply Lemma 3 to obtain the claimed inequality
1
20" 2 5 12(Wo) + Z(M)] = Z(7).
Since 0 < Z(W) < 1 and Z(W") = Z(W)?, we have Z(W) > Z(W"), with equality

iff Z(W) equals 0 or 1. Since Z(W') > Z(W), this also shows that Z(W') = Z(W")
iff Z(W) equals 0 or 1. So, by Prop. 1, Z(W') = Z(W") iff (W) equal to 1 or 0.

2.6 Proof of Proposition 6

From (2.1), we have the identities

W' (f1,y2) 00 (f(r1,32)I1) =
(W (7110)% + W (y1[1)*] W (2] 0) W (v2]1)+

(W (3210)> + W (y2|1)*] W (»110) (1 [1) (2.28)

Bl— B =

and

W' (f1,2)[0)=W' (f(y1,2)11) =
SIP010) = WOr DI 0210) - W (al1)]. (229)

Suppose W is a BEC, but ' is not. Then, there exists (y1,y;) such that the left
sides of (2.28) and (2.29) are both different from zero. From (2.29), we infer that
neither y) nor y, is an erasure symbol for 7. But then the RHS of (2.28) must be
zero, which is a contradiction. Thus, W’ must be a BEC. From (2.29), we conclude
that f(y1,)2) is an erasure symbol for " iff either y; or y; is an erasure symbol for
W . This shows that the erasure probability for W’ is 2& — €2, where ¢ is the erasure
probability of 7.

Conversely, suppose W' is a BEC but I is not. Then, there exists y; such that
W(y1|0)W(y1|1) > 0 and W (y;|0) — W (y;|1) # 0. By taking y, = y;, we see that
the RHSs of (2.28) and (2.29) can both be made non-zero, which contradicts the
assumption that W' is a BEC.

The other claims follow from the identities

W (f01,22),utl0) W (f(y1,92),m1]1)
= 017 Gy © D)W 02100 (12]1)

and
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W (f»1,92),u1|0) =" (f(1,y2),u1(1)
= SO ) 0210) = W (sl & )W 2 ]1).

The arguments are similar to the ones already given and we omit the details, other
than noting that ( f(y,y2),u1) is an erasure symbol for " iff both y; and y, are
erasure symbols for /7.






Chapter 3
Channel Polarization

Abstract This chapter proves the main polarization theorems.

3.1 Polarization Theorems

The goal of this chapter is to prove the main polarization theorems, restated below.

Theorem 1 For any B-DMC W, the channels {WA(,i)} polarize in the sense that, for
any fixed 6 € (0,1), as N goes to infinity through powers of two, the fraction of

indices i € {1,.. .,N}forwhichl(W,\(,i)) € (1—6,1] goes to I(W) and the fraction
Jor which I(WA(,')) €[0,6) goesto 1 —I(W).

Theorem 2 Let W be a B-DMC. For any fixed rate R < I(W) and constant B < %,
there exists a sequence of sets { @y} such that oy C {1,...,N}, |@y| > NR, and

Sz =027V, G.1)

i€ty

Conversely, if R > 0 and B > % then for any sequence of sets { <y} with <fy C
{1,...,N}, || > NR, we have

max{Z(W\") :i € ot} = 0(2V). (3.2)

3.2 A stochastic process framework for analysis

The analysis is based on the recursive relationships depicted in Fig. 5; however,
it will be more convenient to re-sketch Fig. 5 as a binary tree as shown in Fig. 6.
The root node of the tree is associated with the channel . The root W gives birth

31
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to an upper channel Wz( ") and a lower channel Wz(z) , which are associated with the
two nodes at level 1. The channel Wz(l) in turn gives birth to the channels W4(1) and

W4(2), and so on. The channel Wz(,,') is located at level # of the tree at node number i
counting from the top.

There is a natural indexing of nodes of the tree in Fig. 6 by bit sequences. The root
node is indexed with the null sequence. The upper node at level 1 is indexed with 0
and the lower node with 1. Given a node at level n with index b,b; - - - b, the upper

node emanating from it has the label b;b; - -- 5,0 and the lower node b1b; - - b,1.
According to this labeling, the channel Wz(,,') is situated at the node b;b; - - - b, with

i=1+ Z;?:] b 12”_f. We denote the channel Wz(,f) located at node b5, - - - b, alterna-
tively as Wy, _4,.

ng = Wooo
W4(1) = Woo
WB(Z) = Wooi
w" =w,
VVg( ) = Woro
0 @)
W= =Wy
( wg™ =Won
— W
‘ Wg( ) = Moo
1 W4(3) =W
Wg@ =Wio
i =m
ng =W
w =,
VVg(S) =W

Fig. 3.1 The tree process for the recursive channel construction.

We define a random tree process, denoted {Kj,;n > 0}, in connection with Fig. 6.
The process begins at the root of the tree with Ko = W. For any r > 0, given that
Ky =Wy, ..b,» Knt1 equals Wy, .0 or Wy, ..,1 with probability 1/2 each. Thus, the
path taken by {K} through the channel tree may be thought of as being driven by
a sequence of i.i.d. Bernoulli RVs {B,;n = 1,2,...} where B, equals 0 or 1 with
equal probability. Given that By,...,B, has taken on a sample value by,...,b,, the
random channel process takes the value K, = Wp, ..;,,. In order to keep track of the
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rate and reliability parameters of the random sequence of channels K,,, we define the
random processes I, = I(K,) and Z, = Z(Kp,).

For a more precise formulation of the problem, we consider the probability space
(Q,.%,P) where Q is the space of all binary sequences (b),b3,...) € {0,1}*, Z is
the Borel field (BF) generated by the cylinder sets S(by,...,by,) 4 {lweQ:w =
bly...,@y=by},n>1,b1,...,b, € {0,1}, and P is the probability measure defined
on % such that P(S(by,...,b,)) = 1/2". For each n > 1, we define .%, as the BF
generated by the cylinder sets S(by,...,b;), | <i<n, by,...,b; € {0,1}. We define
Fyp as the trivial BF consisting of the null set and Q only. Clearly, %y C %, C --- C
Z.

The random processes described above can now be formally defined as follows.
For o = (@, %,...) € Q and n > 1, define B, (@) = On, K (©) = Wey,...0> In(®) =
I(K,(®)), and Z,(w) = Z(Kx(®)). Forn =0, define Ko = W, I = I(W), Zoy = Z(W).
It is clear that, for any fixed n > 0, the RVs B,,, Ky, I,,, and Z, are measurable with
respect to the BF .%,,.

3.3 Proof of Theorem 1

We will prove Theorem 1 by considering the stochastic convergence properties of
the random sequences {/,} and {Z,}.

Proposition 8 The sequence of random variables and Borel fields {I,, #,;n > 0}
is a martingale, i.e.,

Fn C Py and 1, is F,-measurable, 3.3)
E[|L]] < e, (3.4)
I, = E[In+1|§n]' (3-5)

Furthermore, the sequence {I,;n > 0} converges a.e. to a random variable I.. such
that E|L.] = L.

Proof. Condition (3.3) is true by construction and (3.4) by the fact that 0 < I, < 1.
To prove (3.5), consider a cylinder set S(by,...,b,) € F#, and use Prop. 7 to write

1 1
E[In-H |S(b1 R ,bn)] = El(WblA..bno) + EI(Wbl'“bnl)
= 1(Wy,..3,)-
Since I(Wj,...»,) is the value of I, on S(by,...,b,), (3.5) follows. This completes
the proof that {I,,.#,} is a martingale. Since {I,,%#,} is a uniformly integrable

martingale, by general convergence results about such martingales (see, e.g., [3,
Theorem 9.4.6]), the claim about /.. follows.

It should not be surprising that the limit RV L. takes values a.e. in {0, 1}, which
is the set of fixed points of /(W) under the transformation (W, W) — (Wz(l), 2(2)),
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as determined by the condition for equality in (2.9). For a rigorous proof of this
statement, we take an indirect approach and bring the process {Z,;n > 0} also into
the picture.

Proposition 9 7The sequence of random variables and Borel fields {Z,, %,;n > 0}
is a supermartingale, i.e.,

Gy C Fpy1 and Zy, is Fp-measurable, (3.6)
E[|Zy]] < e, (3.7)
Zy 2 E[Zy11|Z0). (3.3)

Furthermore, the sequence {Z,;n > 0} converges a.e. to a random variable Z..
which takes values a.e. in {0,1}.

Proof. Conditions (3.6) and (3.7) are clearly satisfied. To verify (3.8), consider a

cylinder set S(by,...,b,) € %, and use Prop. 7 to write
| 1
E(Zu1S(b1,-- - ba)] = S Z(Why..,0) + 7 Z(Ws,0,1)
< Z(Wp,.t,)-

Since Z(Wp,...»,) is the value of Z, on S(b1,...,b,), (3.8) follows. This completes
the proof that {Z,, %#,} is a supermartingale. For the second claim, observe that the
supermartingale {Z,,.%,} is uniformly integrable; hence, it converges a.e. and in
#'toaRV Z. such that E[|Z, — Z..|] — 0 (see, e.g., [3, Theorem 9.4.5]). It follows
that E[|Z,+1 — Z4|] — 0. But, by Prop. 7, Z,11 = Z2 with probability 1/2; hence,
El|Zys1 = Z4|] > (1/2)E[Z,(1 — Zy)] > 0. Thus, E[Z,(1 — Z,)] — 0, which implies
E[Z.(1 —Z.)] = 0. This, in turn, means that Z., equals 0 or 1 a.e.

Proposition 10 The limit RV I. takes values a.e. in the set {0,1}: P(lo =1) = Iy
and P(l.=0)=1—1I.

Proof. The fact that Z.. equals 0 or 1 a.e., combined with Prop. 1, implies that
L. =1 —Z. a.e. Since E[l.] = Iy, the rest of the claim follows.

As a corollary to Prop. 10, we can conclude that, as N tends to infinity, the sym-

metric capacity terms {/ (W]E,i) : 1 < i < N} cluster around 0 and 1, except for a
vanishing fraction. This completes the proof of Theorem 1.

3.4 Proof of the converse part of Theorem 2

We first prove the converse part of Theorem 2 which we restate as follows.

Proposition 11 For any B > 1/2 and with P(Zy > 0) > 0,

lim P(Z, < 272"} =0. (3.9)

n—oo
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Proof. Observe that the random process Z, is lower-bounded by the process {Ln :
ne N} defined by Lo := Zy and forn > 1

L,= Lf,_l when B, = 1,
L,=L, when B,, = 0.

Thus, L, = L%S" where S, := X7 | B;. So, we have
P(Z, <27y <P(L,<27?")

= P<S,, >nf — logz(—logz(zo))>-

For B > %, this last probability goes to zero as » increases by the law of large
numbers.

3.5 Proof of Theorem 2: The direct part

In this part, we will establish the direct part of Theorem 2 which may be stated as
follows.

Proposition 12 For any given B < % and € > 0, there exists n such that

P(Zo<2 ") > I —e. (3.10)

The proof of this result is quite lengthy and will be split into several parts. It
will be convenient to introduce some notation and state an elementary fact before
beginning the proof.

Forn>m>0and 0 < f <1, define S, , =3, Bi and

Fun(B)={0€ Q: Spn(@)> (n—m)B}.

By Chernoff’s bound (see, e.g., [6, p. 531]), for 0 < 8 < %, the probability of this
set is bounded as

P[Fpn(B)] > 1 — 2~ (r=mI = (B)] (3.11)

where () = —Blog,(B) — (1 — B)log,(1 — B) is the binary entropy function.
Clearly, for 0 < B < 1/2, the probability of .}, , goes to 1 as (n —m) increases.
Define no(f,€) as the smallest value of (» —m) such that the RHS of (3.11) is
greater than or equal to 1 — €.
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3.5.1 A bootstrapping method

We first give a bound to majorize the process {Z,} on a sample function basis. For
this it is more convenient to consider the logarithmic process ¥, := log,(Z,). This
process evolves as

Vi1 =2V; when B;y =1,

Viein <Vi+1 when B;, = 0.
Thus, at each step either the value is doubled or incremented by an amount not
exceeding one. In terms of this process, we wish to show that with probability close

to Iy we have V,, ~ —27.
The following lemma is key to analyzing the behavior of the process {V},}.

Lemmad Let A : R — R, A(x) = x+ | denote adding one, and D : R — R,
D(x) = 2x denote doubling. Suppose a sequence of numbers ag,ay,...,ay is defined
by specifying ay and the recursion

a1 = fi(a:)
with f; € {A,D}. Suppose '{Ogign—l :ﬁ:D}[ :kand\{OS i<n—1:fi=
A}‘ =n—k, i.e., during the first n iterations of the recursion we encounter doubling
k times and adding-one n — k times. Then

an < DV (478 (ag)) = 2K (ag +n k).

Proof. Observe that the upper bound on g, corresponds to choosing

fo= - fugr=4 and fyg=--=fy =D.
We will show that any other choice of { f;} can be modified to yield a higher value of
ay. To that end suppose { f;} is not chosenas above. Then thereexists j € {1,...,n—

1} for which fj_; = D and f; = A. Define { ]} by swapping f; and f;_,, i.e.,

A4 i=j-1
fi={P i=j
fi else

and let {a;} denote the sequence that results from {/;}. Then

/ . .
a;=a; fori<j
a} =aj_1+1

/ !
aj,1=2a;=2a;_1+2

> 2aj_1 +1= ajtl-
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Since the recursion from j+ 1 onwards is identical for the { ;} and { /{} sequences,
and since both 4 and D are order preserving, @ > a;1 implies that a), > ay.

By Lemma 4, we can write for any n > m

Vo < [V + (n— m) — Sy ) 257
< [Vin+ (n—m)] 25

The process {V;, } takes values in (—eo, 0] and the above bound is effective only when
Vn + (n —m) is less than 0. This means that for fixed m, there is a limit to how large
n can be taken before rendering the bound useless. On the other hand, in order to
obtain the desired rate of exponential convergence one wishes to take » much larger
than m so that the exponent can be approximated with high probability as

Smn=n/2.

Fortunately, by applying the same bound repeatedly these two conflicting constraints
on the choice of 7 can be alleviated. For example, applying the bound first over [m, k|
and then over [k, n] we obtain

Vo < [(Vin+ (k—m))25nk - (n — k)| 250 (3.12)

Now, a value of £ modestly larger than m can ensure that I}, takes on a sufficiently
large negative value to ensure that we can choose » > k. This will be shown below.
However, still one needs to be able to begin with a large enough negative value for
Vi to initiate the bootstrapping operation. The following result states that this can
be done.

Proposition 13 For any given € > 0 and there exists my(€) such that for all m >
my(€)

P(Vm < —2m) >Iy—¢ (3.13)

Accepting the validity of Proposition 13 momentarily, we will show how to com-
plete the proof of Proposition 12. We will prove Proposition 13 in the following two
subsections.

Let m > mo(g/3) be arbitrary. Set k = 2m and n = m?. Then, with probability at
least Iy — €/3, we have by (3.12) that

Vo < (=m25nom 4 (m? — 2m)) 2 mn

For any given 8 < 1/2, we can choose 8’ € (8,1/2) such that for m sufficiently
large we have

P(Smam > B'm) >1—¢/3

and
P(Sy 2 > B'(m* —m)) > 1—¢/3
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So, for such m we have with probability at least Iy — €

Vi < [-m2™ 4 (m? — 2m)]2(m*=2m)B',

m

For a non-trivial bound we need to ensure that the term in square brackets is bounded
away from zero on the negative side. So, we impose the following additional con-

straint on m: ,
[~m2"P" 4 (m? —2m)] < 1

which clearly can be met by choosing m large enough. Then, for all m satisfying all
the constraints above we have

V< _2(m2—2m)ﬁ’
with probability at least Iy — €. This, written in terms of # = m? reads as
v, < —pn=om)B’ « _onp

where the second inequality holds for 7 large enough since g’ > 3.

3.5.2 Sealing the process in [0, (]

The proof of Proposition 13 also contains a bootstrapping argument, but of a differ-
ent type. We first establish a result that “seals” as much of the sample paths of {Z,,}
as possible in a small interval around zero. For { > 0 and £ > 0, define

() 4 {we Q:Zj(w) < foralli > ¢}
Lemma 5 Forany { > 0 and € > 0, there exists £y({, €) such that for all £ > £

PO =l —e.

Proof. Fix { > 0. Let 20 2 {® € Q : lim, . Zy(®) = 0}. By Prop. 10, P() =
Iy. Fix o € Qy. Z,(w) — 0 implies that there exists no(®,&) such that n >
ny(w,8) = Zy(w) < §. Thus, o € F;(§) for some m. So, y C U;_| Zu(§).
Therefore, P(U;_| Z2(§)) > P(£). Since Z;(&) T Up=y Z4({), by the mono-
tone convergence property of a measure, limy_,.P[7;(§)] = P[U;_; Z:(£)]. So,
limy_,ee P[Z4(&)] > Iy. Tt follows that, for any { > 0, € > 0, there exists a finite
4y =£4o(, €) such that, for all ¢ > 4y, P[.F;(§)] > Ip — €. This completes the proof.
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3.5.3 Proof of Proposition 13

For w € Z;({) and i > ¢, we have

Z,~+1(co)< 2, ifBi1(w)=0
Zi(w) ~ | ¢, ifBiyi(w)=1

which implies
Zn(0) < Zg(@) 27~ 5em(@) £Seml@) 0y € FH(0), m> ¢

This gives
Zn(®) < Zo(0) 2" P EBY"™, 0 € TE) NS m(B).

Now, we set { = §o:=27, B = Bo := 9/20, m = (7£/3), and note that Z, < 1, to
obtain

Zn(©) 2727 © € Tam7)(60) N 3m/7).m(Bo)- (3.14)

The bound (3.11) and Lemma 5 ensure that there exists mg(€) such that, for all
m > my(€), (3.14) holds with probability greater than Iy — €. Specifically, it suffices
to take m greater than both (7/4)no(Bo,€/2) and (7/3)40(&o,€/2).

3.5.4 Complementary remarks

Theorem 2 was first proved in [2] and the proof of the theorem proved above fol-
lowed that paper closely. The channel polarization result as expressed by Theorem 2
does not show an explicit dependence on the rate parameter R except for the condi-
tion that R < Ij. Rate-dependent refinements of this theorem have appeared in [18],
[8], [17] soon after the publication of [2]. For a more recent work on the same sub-
ject, see [7]. To state this refined polarization theorem, let O : R — [0, 1] denote the
complementary cumulative distribution function for the standard normal distribu-

tion: | -
2
)= —— U2y
00 =—= [ &P au

Let O~ ! denote the inverse of Q. Then, the refined result can be stated in the present
notation as follows.

Theorem 6 For any 0 < R < I(W), the Bhattacharyya random process in polariza-
tion has asymptotic probabilities given by

n+0~ L (R/ 1) ﬁ1/2+awm)

P(z,<27? SR
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3.6 A side result

It is interesting that Propositon 9 gives a new interpretation to the symmetric capac-
ity I(W) as the probability that the random process {Z,;n > 0} converges to zero.
Here, we use this to strengthen the lower bound in (0.1).

Propesition 14 For any B-DMC W, we have W)+ Z(W) > 1 with equality iff W
is a BEC.

This result can be interpreted as saying that, among all B-DMCs #, the BEC
presents the most favorable rate-reliability trade-off: it minimizes Z (W) (maximizes
reliability) among all channels with a given symmetric capacity /(W); equivalently,
it minimizes /(W) required to achieve a given level of reliability Z(W).

Proof. Consider two channels W and W' with Z(W) = Z(W') 2 2. Suppose that
W' is a BEC. Then, W’ has erasure probability zo and /(W’') = 1 — zy. Consider the
random processes {Z, } and {Z,,}. By the condition for equality in (2.18), the process
{Z,} is stochastically dominated by {Z} in the sense that P(Z, < z) > P(Z,, < z)
for all » > 1, 0 < z < 1. Thus, the probability of {Z,} converging to zero is lower-
bounded by the probability that {Z,} converges to zero, i.e., [(W) > I(W'). This
implies I(W) +Z(W) > 1.



Chapter 4
Polar Coding

Abstract We show in this section that polar coding can achieve the symmetric ca-
pacity I(W) of any B-DMC .

4.1 Plan of chapter

The main technical task in this chapter will be to prove Prop. 2. We will carry out the
analysis over the class of Gy-coset codes before specializing the discussion to polar
codes. Recall that individual Gy-coset codes are identified by a parameter vector
(N,K, o ,uqec). In the analysis, we will fix the parameters (N, K, o7 ) while keeping
u e free to take any value over 2 VXK. In other words, the analysis will be over
the ensemble of 2V =K Gy-coset codes with a fixed (N,K,.7). The decoder in the
system will be the SC decoder described in Sect. 1.2.2.

4.2 A probabilistic setting for the analysis

Let (27N x &N P) be a probability space with the probability assignment

P ) 2 27N oY 1) (4.1)

for all (u1 , yN ye ZN x &N, On this probability space, we define an ensemble
of random vectors (U, X7 ,YIN ,UN ) that represent, respectively, the input to the
synthetic channel Wy, the input to the product-form channel W | the output of WV
(and also of Wy), and the decisions by the decoder. For each sample point (u1 , y’lv ) €
XN x N, the first three vectors take on the values U (u) ,y)) = ulY, XN( ) ,yN) =
u Gy, and YN(ul 7)) =»Y, while the decoder output takes on the value U1 (uY ,yllv)
whose coordinates are defined recursively as

41
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Ui, ie”

Ui ) = N
(1) {h,-(yIlV,U]llul,yN i€

4.2)

fori=1,...,N.

A realization ) € 2V for the input random vector U}¥ corresponds to send-
ing the data vector u,, together with the frozen vector ugc. As random vectors, the
data part U, and the frozen part Uy are uniformly distributed over their respec-
tive ranges and statistically independent. By treating U as a random vector over
ZN=K we obtain a convenient method for analyzing code performance averaged
over all codes in the ensemble (N,K,.«7).

The main event of interest in the following analysis is the block error event under
SC decoding, defined as

EL (WY ) € N x N Uy (bl 3Y) # 1. (4.3)

Since the decoder never makes an error on the frozen part of UV, i.e., Uc equals
U, with probability one, that part has been excluded from the definition of the
block error event.
The probability of error terms P,(N,K,.o/) and P,(N,K, &/ ,u ) that were de-
fined in Sect. 1.2.3 can be expressed in this probability space as
Pe(N,K, o) = P(&),

44
PuN.K, 67 t10y¢) = P(& | {Usge = 1ye}), @4

where {Uye = uye} denotes the event { (i#) ,))) € 2N x IV iige = ugse}.

4.3 Proof of Proposition 2

We may express the block error event as & = U, oy %; where

B 2 ) € N x N ulT =07 WY ), wi # O DY)} 4.5)

is the event that the first decision error in SC decoding occurs at stage /. We notice
that
Bi={(u) y)ye 2N xaN i =
={@ Wye 2N xaN u!
c{@Y )ye 2N x N cui # b
C &

(ullvvyllv ), Ui 7 hi (yN u

A]iil(ujlvayll\l ul#h(yN Ull ! ul ).VN
i
uy )}

U,
07

where
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E2{ ) e 2V x N wy VoY i ) <V (w1}

4.6)
Thus, we have
| sclUé PO Y PE)
iced icd
For an upper bound on P(&;), note that
1
P(&) = ), ‘Z'NWN()’}lV |16, (')
uy' p
wd i—1
1 uy ui®1 (4.7)
< 3 Y (| B )
2 (i)
ul Y Wy ()’N )
=zmy)

We conclude that

P& < Y zm))

ico

which is equivalent to (1.13). This completes the proof of Prop. 2. The main coding
theorem of the paper now follows readily.

4.4 Proof of Theorem 3

By Theorem 2, for any fixed rate R < I(W) and constant f§ < %, there exists a se-
quence of sets {./y } such that @y C {1,...,N}, || > NR, and

Yz =027V, (4.8)
i€y

In particular, the bound (4.8) holds if @y is chosen in accordance with the polar
coding rule because by definition this rule minimizes the sum in (4.8). Combining
this fact about the polar coding rule with Prop. 2, Theorem 3 follows.

4.5 Symmetry under channel combining and splitting

Let W : 2 — % be a symmetric B-DMC with 2" = {0,1} and % arbitrary. By
definition, there exists a a permutation 7; on % such that (i) 7, '= 7 and (ii)
W(y|l) = W(m(y)|0) for all y € &'. Let my be the identity permutation on %'.
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Clearly, the permutations (7, ;) form an abelian group under function compo-
sition. For a compact notation, we will write x -y to denote 7, (y), forx € &,y e ¥
Observe that W (y|x @ a) = W(a-y|x) for alla,x € 2",y € # . This can be verified
by exhaustive study of possible cases or by noting that W (y|x ©a) = W((x©a) -
»[0) =W(x-(a-y)|0) = W(a-y|x). Also observe that W (y|x ®a) = W(x-y|a) as ®
is a commutative operation on .Z".
Forx) € 2N, )V € &V, let

A
lev.yzl\/: (x1 -yl,...,xN-yN). (4.9)
This associates to each element of 2V a permutation on %

Proposition 15 [fa B-DMC W is symmetric, then WY is also symmetric in the sense
that

A 1 @al) =N - |al) (4.10)

forallx,aY € ZN, YW ewV
The proof is immediate and omitted.

Proposition 16 If a B-DMC W is symmetric, then the channels Wy and W]\(,i) are
also symmetric in the sense that

Wy |uw)) =Wy(a) Gy - |uf @al), (4.11)

O i ) =W (@ Gy il @d T wda)  (412)

forallul,ay € ZN, YW e N, N=2"n>0,1<i<N.

Proof. Letx) =uY Gy and observe that Wy (y |4)) =TIV, W (vi | xi) = [T, W (x;-
yi |0) = Wy(x -y | 0)). Now, let 5 = a) Gy, and use the same reasoning to see
that Wy () -3 ) @ aY) = (e @5Y) - (5 3) [ 07) = (e 7| 0F). This
proves the first claim. To prove the second claim, we use the first result.

i i— 1
08 ) = 3 s O o)

N
Uit

1
=D, 2;\/—_1WN(011VGN'Y11V | u) ®a))
1

=Wn(a) G-y @d ! |ui@a)
where we used the fact that the sum over uﬁl € 2N~ can be replaced with a sum

v N N N o .N N-iy _ yN-i
overu, | ®al,, forany fixed a) since {u?, | ®a), :ul, € ZV "} =xN



4.6 Proof of Theorem 4 45

4.6 Proof of Theorem 4

We return to the analysis in Sect. 4.3 and consider a code ensemble (N, K, &) under
SC decoding, only this time assuming that /¥ is a symmetric channel. We first show
that the error events {&;} defined by (4.6) have a symmetry property.

Proposition 17 For a symmetric B-DMC W, the event &; has the property that
@) eé& i (a'eu),alGy ) e (4.13)
foreach1 <i<N, (ul y))e ZN x VN, all e 27V

Proof. This follows directly from the definition of &; by using the symmetry prop-
erty (4.12) of the channel WA(,').

Now, consider the transmission of a particular source vector # 4 and frozen vector
Ugyc, jointly formmg an input vector ! for the channel Wy. This event is denoted
below as {UY¥ = u}'} instead of the more formal {u}'} x #V.

Corollary 1 For a symmetric B-DMC W, for each 1 <i <N and u11V € XN, the
events & and {U)Y = u)'} are independent; hence, P(&;) = P(&; | {U) = u}'}).

Proof. For () ,)Y) € 2N x &N and x)/ = u) Gy, we have
P(& [{UY =u)'}) = 204 ) 1Y)
N
= W) -y 1 0Y) 140Y, %Y 54 (4.14)
N

=P(& | {U]' =0{}). (4.15)
Equality follows in (4.14) from (4.11) and (4.13) by taking allv = u’lv, and in (4.15)
from the fact that {x} -y : yV € &N} = &N for any fixed x)' € ZV. The rest of

the proof is immediate.

Now, by (4.7), we have, for all ullv eV,
P(& | {U) =ul'}) < Z(my") (4.16)
and, since & C Ujcy &}, we obtain

P& {UY =)} < 3 20w ). (4.17)

icd

This implies that, for every symmetric B-DMC W and every (N, K, o7 ,u ) code,
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|
PANK, o ugge) = . SxPE| (U =ui'})
HEQ'/EL%/A
<3z, (4.18)
icof
This bound on P, (N, K, &7 ,u ) is independent of the frozen vector u . Theorem 4
is now obtained by combining Theorem 2 with Prop. 2, as in the proof of Theorem 3.
Note that although we have given a bound on P(&|[{ UV =u}'}) that is indepen-
dent of z/lv , we stopped short of claiming that the error event & is independent of

UY because our decision functions {;} break ties always in favor of #; = 0. If this
bias were removed by randomization, then & would become independent of U 1N .

4.7 Further symmetries of the channel st,i)

We may use the degrees of freedom in the choice of a} in (4.12) to explore the

symmetries inherent in the channel WI\(,i) . For a given ()/lv ,u’i), we may select azlv
with aj = u} to obtain

OO i ) = w (@) Gy Y, 0071 | 0). (4.19)

So, if we were to prepare a look-up table for the transition probabilities {7, 1\(; ) oY, u‘i‘l
u;) : Y € N uh € 27, it would suffice to store only the subset of probabilities
(oA, 0071 0) )Y € VY,

The size of the look-up table can be reduced further by using the remaining de-
grees of freedom in the ch01ceofa - Let 3&”“ = {al eZN:al =01}, 1<i<N.
Then, forany 1 <i <N, a1 € £:+1’ andy1 € &V, we have

w4, 0110) = Wi (@Y Gy 57,0171 10) (4.20)

which follows from (4.19) by taking ) = Oi on the left hand side.

To explore this symmetry further, let 2 yN {aVGy -y :al e N i+11- The
set Z;, -y is the orbit of y{ under the actzon group 2. The orbits 2, -y
over variation of yN partition the space #V into equivalence classes. Let @lN be
a set formed by taking one representative from each equivalence class. The output
alphabet of the channel Wl\(,i) can be represented effectively by the set @lﬂrv |-

For example, suppose W is a BSC with % = {0, 1}. Each orbit &”IH -»Y has

2¥=1 elements and there are 2/ orbits. In particular, the channel W(1 has effectively
two outputs, and being symmetric, it has to be a BSC. This is a great simplification
since WIS,I) has an apparent output alphabet size of 2V, Likewise, while WA(,I) has an

apparent output alphabet size of 2¥*~!  due to symmetry, the size shrinks to 2.
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Further output alphabet size reductions may be possible by exploiting other prop-
erties specific to certain B-DMCs. For example, if 7 is a BEC, the channels {Wls,’)}
are known to be BECs, each with an effective output alphabet size of three.

The symmetry properties of { W,\(,i )} help simplify the computation of the channel
parameters.

Proposition 18 For any symmetric B-DMC W, the parameters {Z (W/\(,i))} given by
(1.5) can be calculated by the simplified formula

Z(W,\(,i))=2i’1 > 12k yNI\/WN ,00 ‘|0)W( oA, 0.

neZ

We omit the proof of this result.
For the important example of a BSC, this formula becomes

ZwP)=2%1 3 w0 0110y w0, 00 ).
N

E@/H

This sum for Z(Wl\(,i)) has 2/ terms, as compared to 2V*~! terms in (1.5).






Chapter 5

Encoding, Decoding and Construction of Polar
Codes

Abstract This chapter considers the encoding, decoding, and construction problems
for polar coding.

5.1 Encoding

In this section, we will consider the encoding of polar codes and prove the part
of Theorem 5 about encoding complexity. We begin by giving explicit algebraic
expressions for Gy, the generator matrix for polar coding, which so far has been de-
fined only in a schematic form by Fig. 3. The algebraic forms of Gy naturally point
at efficient implementations of the encoding operationx’lV = uilv Gy. In analyzing the
encoding operation Gy, we exploit its relation to fast transform methods in signal
processing; in particular, we use the bit-indexing idea of [4] to interpret the various
permutation operations that are part of Gy.

5.1.1 Formulas for Gy

In the following, assume N = 2" for some n > 0. Let I; denote the k-dimensional
identity matrix for any £ > 1. We begin by translating the recursive definition of Gy
as given by Fig. 3 into an algebraic form:

Gy = (N ®F)Ry (L ®Gyjz), forN >2,

with G; = 1.

Either by verifying algebraically that (Iy/; ® F)Ry = Ry(F ® Iy/;) or by ob-
serving that channel combining operation in Fig. 3 can be redrawn equivalently as
in Fig. 8, we obtain a second recursive formula

49
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Uy Ul ~ VI Y1
A\
u us T\ V2 2
A\
Wy )2
Un/2-1
Un/2 m VN/2 YN/2
A\
Ry
UN/2+1 uy YN/2+1
VN/2+1
Unja+2 Uy YN/2+2
VN/2+2
Wy a
Un Un VN N
Wy

Fig. 5.1 An alternative realization of the recursive construction for Wy.

Gy =RN(F 3 1y)2)(L® Gy2)
=RN(F®Gy)2),

(5.1)

valid for N > 2. This form appears more suitable to derive a recursive relationship.

We substitute Gy, = Ry 2(F ® Gy4) back into (5.1) to obtain

Gy =Ry (F® Ry (FQ®Gya)))
=Ry (L ®Ry)2) (F* @ Gys)

(5.2)

where (5.2) is obtained by using the identity (AC) ® (BD) = (4 ® B)(C ® D) with
A=15L,B=Ry),C=F,D=F ® Gy Repeating this, we obtain

Gy =BNF(XM

(5.3)
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where By 2 RN(L®Ry/2)(Ia ® Ryya) -+~ (Iyj, @ Ry). It can seen by simple manip-
ulations that

By =Rn(l2®By)2). (54

We can see that By is a permutation matrix by the following induction argument.
Assume that By, is a permutation matrix for some N > 4; this is true for N =4
since B, = I,. Then, By is a permutation matrix because it is the product of two
permutation matrices, Ry and I, @ By 5.

In the following, we will say more about the nature of By as a permutation.

5.1.2 Analysis by bit-indexing

To analyze the encoding operation further, it will be convenient to index vectors and
matrices with bit sequences. Given a vector aJIV with length N = 2" for some n > 0,
we denote its ith element, a;, 1 <i < N, alternatively as ay,..., where by --- b, is
the binary expansion of the integer i — 1 in the sense that i = 1+ 37_, b;2""/. Like-
wise, the element 4;; of an N-by-N matrix 4 is denoted alternatively as 4;, by, -,
where by --- b, and b] - - - b}, are the binary representations of i — 1 and j — 1, respec-
tively. Using this convention, it can be readily verified that the product C =4 ® B
of a 2"-by-2" matrix 4 and a 2"-by-2" matrix B has elements Cj, .

Apyby -, By biom bl B

’ ’
"bn+m7bl "'bn+m

We now consider the encoding operation under bit-indexing. First, we observe
that the elements of F' in bit-indexed form are given by F, ,y = 1 @ &' @ bb’ for all
b,b' € {0,1}. Thus, F®" has elements

n n
Ey b, = iIZIlFbi,b; = E(l & b, @ bib}). (5.5)

Second, the reverse shuffle operator Ry acts on a row vector LII]V to replace the
element in bit-indexed position b - - - b, with the element in position b; - - - b,b1; that
is, ifv’lv = uJIVRN, then vy, .5, = up,..p,5, forall by,...,b, € {0,1}. In other words,
Ry cyclically rotates the bit-indexes of the elements of a left operand ujlv to the right
by one place.

Third, the matrix By in (5.3) can be interpreted as the bit-reversal operator:
if VIIV = uJIVBN, then vy, ..., = up,..,, for all by,...,b, € {0,1}. This statement
can be proved by induction using the recursive formula (5.4). We give the idea
of such a proof by an example. Let us assume that B4 is a bit-reversal operator
and show that the same is true for Bg. Let uif be any vector over GF(2). Using
bit-indexing, it can be written as (uooo,uom,uolo,um],uloo,ulol,u“o,u“]). Since
u?Bg = u%Rg([z ® By), let us first consider the action of Rg on u? The reverse
shuffle Rg rearranges the elements of u? with respect to odd-even parity of their
indices, SO uilgRg equals (uooo,u()lo,uloo,ullo,uo()l,uo“,u101,u111). This has two
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halves, ¢} el (4000, 4010, %100, #110) and d} A (uo01, 011,101,111 ), corresponding
to odd-even index classes. Notice that cp p, = up,p,0 and dp,p, = up p,1 for all
b1,by € {0,1}. This is to be expected since the reverse shuffle rearranges the indices
in increasing order within each odd-even index class. Next, consider the action of
I) ® B4 on (c‘f,df). The result is (C?B4,de4). By assumption, By is a bit-reversal
operation, so c‘fB4 = (co0,€10,¢01,¢11), Which in turn equals (%000, %100, %010, %110)-
Likewise, the result of dj‘B4 equals (ugo1,%101,%011,4111 ). Hence, the overall opera-
tion Bg is a bit-reversal operation.

Given the bit-reversal interpretation of By, it is clear that By is a symmetric
matrix, so B{, = By. Since By is a permutation, it follows from symmetry that B;,l =
By.

It is now easy to see that, for any N-by-N matrix 4, the product C = B} ABy
has elements Cy, bbby = Apyby by Tt follows that if 4 is invariant under bit-
reversal, i.e., if Ay,..p, pi..5, = Ap,..5, 1.4 TOr every by, ..., bn, 1., b,€{0,1},
then 4 = B,(,ABN. Since BY, = B,Ql, this is equivalent to ByA = ABy. Thus, bit-
reversal-invariant matrices commute with the bit-reversal operator.

Proposition 19 For any N = 2", n > 1, the generator matrix Gy is given by Gy =
BNF®" and Gy = F®"By where By is the bit-reversal permutation. Gy is a bit-
reversal invariant matrix with

n

(ON)oy byt = [ (1 © B} by i) (5.6)

i=1

Proof. F®" commutes with By because it is invariant under bit-reversal, which
is immediate from (5.5). The statement Gy = ByF*" was established before; by
proving that F®” commutes with By, we have established the other statement:
Gy = F®"By. The bit-indexed form (5.6) follows by applying bit-reversal to (5.5).

A fact useful for estimation of minimum Hamming distances of polar codes is
the following.
Proposition 20 ForanyN =2",n>0, by,...,b, € {0,1}, the rows of Gy and F*"

with index by - - - b, have the same Hamming weight given by 2w (D1-owsbn),

Proof. For fixed by, ..., by, the sum of the terms (GN)bn---b",b’l b, (as integers) over
all b,...,b, € {0,1} gives the Hamming weight of the row of Gy with index
by - -- b,. This sum is easily seen to be 2w (1bn) where

n
wi(bi,....ba) = Y by (5.7)
i=1

is the Hamming weight of (41, ...,b,). The proof for F<" is obtained by using the
same argument on (5.5).
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5.1.3 Encoding complexity

For complexity estimation, our computational model will be a single processor ma-
chine with a random access memory. The complexities expressed will be time com-
plexities. The discussion will be given for an arbitrary Gy-coset code with parame-
ters (N, K, o ,ugyc).

Let yg(N) denote the worst-case encoding complexity over all (N, K, o7, u )
codes with a given block-length N. If we take the complexity of a scalar mod-2
addition as 1 unit and the complexity of the reverse shuffle operation Ry as N units,
we see from Fig. 3 that yz(N) < N/2+N+2yxr(N/2). Starting with an initial value
x£(2) = 3 (a generous figure), we obtain by induction that yz(N) < %N logN for
all N = 2", n > 1. Thus, the encoding complexity is O(NlogN).

) L,
e
e L)) .
L]

Fig. 5.2 A circuit for implementing the transformation F¢3. Signals flow from left to right. Each
edge carries a signal 0 or 1. Each node adds (mod-2) the signals on all incoming edges from the
left and sends the result out on all edges to the right. (Edges carrying the signals »; and x; are not
shown.)

e
Il
=
T

=
Il
&
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A specific implementation of the encoder using the form Gy = ByF©" is shown
in Fig. 9 for N = 8. The input to the circuit is the bit-reversed version of uf, i.e.,
ﬁff = M%Bg. The output is given by xff = ﬁifF ®3 = u?Gg. In general, the complexity
of this implementation is O(Nlog N) with O(N) for By and O(NlogN) for F®".

An alternative implementation of the encoder would be to apply uff in natural

index order at the input of the circuit in Fig. 9. Then, we would obtain )sz = u?F 23
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: ; s 8
at the output. Encoding could be completed by a post bit-reversal operation: x] =

BBs = ulGs.

The encoding circuit of Fig. 9 suggests many parallel implementation alterna-
tives for F©": for example, with N processors, one may do a “column by column”
implementation, and reduce the total latency to logN. Various other trade-offs are
possible between latency and hardware complexity.

In an actual implementation of polar codes, it may be preferable to use F©" in
place of ByF®" as the encoder mapping in order to simplify the implementation. In
that case, the SC decoder should compensate for this by decoding the elements of
the source vector ullv in bit-reversed index order. We have included By as part of the
encoder in this paper in order to have a SC decoder that decodes z/lv in the natural
index order, which simplified the notation.

5.2 Decoding

In this section, we consider the computational complexity of the SC decoding al-
gorithm. As in the previous section, our computational model will be a single
“processor machine with a random access memory and the complexities expressed
will be time complexities. Let yp(N) denote the worst-case complexity of SC de-
coding over all Gy-coset codes with a given block-length N. We will show that
xp(N) = O(NlogN).

5.2.1 A first decoding algorithm

Consider SC decoding for an arbitrary Gy-coset code with parameter (N, K, o7 ,u ).
Recall that the source vector z/l\' consists of arandom part u,, and a frozen part u c.
This vector is transmitted across Wy and a channel output y’l\’ is obtained with prob-
ability Wy () |u)). The SC decoder observes ()),u.c) and generates an estimate
f/lv of ul'. We may visualize the decoder as consisting of N decision elements (DEs),
one for each source element u;; the DEs are activated in the order 1 to N. If i € &7°,
the element u; is known; so, the ith DE, when its turn comes, simply sets #; = #; and
sends this result to all succeeding DEs. If i € <7, the ith DE waits until it has received
the previous decisions ﬁ’i_l, and upon receiving them, computes the likelihood ratio.

@LR)

@O N i1
] Ai—1y A w, (yl YU |0)
Lo ) & e
WN (y[lv7ul '1)

and-generates-its decision-as -
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by

the complex1ty of computlng the LRs.
A straightforward calculation using the recursive formulas (2.6) and (2.7) gives

() N/2 ~21 ~2i (1) N n2i—2
Ly, 075072 @ ail?) Ly, Onjspfie ) +1

(&) (N2 220 2i (i) 2
Ly, 0y ”llo EB”lle LN/Z(y%/Z-H’ulle

(5.8)

and

[ 2i ADj— [ N/2 A2i ~ 1=2d;
5\11)0/1\/’“%1 1) [ 5\;)/2 / U %o @u%le 2)]
L), 0N B 2). (59)

Thus, the calculation of an LR at length NV is reduced to the calculation of two LRs at
length N /2. This recursion can be continued down to block-length 1, at which point

the LRs have the form Lgl) (vi) =W (yil0)/W (yi|1) and can be computed directly.
To estimate the complexity of LR calculations, let yz (k), k€ {N,N/2,N/4,... 1},
denote the worst-case complexity of computing L,(C') (*,vi7!) over i € [1,k] and

Ok Vi) e k¥ x 21, From the recursive LR formulas, we have the complex-
ity bound .

xr (k) <2x1(k/2)+ o (5.10)

where « is the worst-case complexity of assembling two LRs at length k/2 into an
LR at length k. Taking xél)(y,-) as 1 unit, we obtain the bound

2 (N) < (1+a)N=O(N). (5.11)

The overall decoder complexity can now be bounded as yp(N) < Kyz(N) <
Nyr(N) = O(N?). This complexity corresponds to a decoder whose DEs do their
LR calculations privately, without sharing any partial results with each other. It turns
out, if the DEs pool their scratch-pad results, a more efficient decoder implementa-
tion is possible with overall complexity O(N logN), as we will show next.



56 5 Encoding, Decoding and Construction of Polar Codes

5.2.2 Refinement of the decoding algorithm

We now consider a decoder that computes the full set of LRs {L (yN 7

i < N}. The previous decoder could skip the calculation of L N (yN pi—1 for i€ eaf ‘
but now we do not allow this. The decisions {#;: 1 <i < N} are made in exactly the
same manner as before; in particular, if i € 7€, the decision #; is set to the known

frozen value u;, regardless of L N) o, 1.
To see where the computational savmgs will come from, we inspect (5.8) and
(5.9) and note that each LR value in the pair

2i—1 ADi— i A2i—
GV, @), L oY, a2 )

is assembled from the same pair of LRs:

i N/2 A2 N i ~
(LY, 01 28352 @832, 1), 0 1011, 2352)).

Thus, the calculation of all N LRs at length N requires exactly N LR calculations at
length N/2.! Let us split the N LRs at length N/2 into two classes, namely,

Ly, 01, a2 e dlis?) 1 <i<N/2},

{802 D) 1 SESN/2),

Let us suppose that we carry out the calculations in each class independently, with-
out trying to exploit any further savings that may come from the sharing of LR
values between the two classes. Then, we have two problems of the same type as
the original but at half the size. Each class in (5.12) generates a set of N/2 LR cal-

culation requests at length N/4, for a total of N requests. For example, if we let

~N2A,.N2 AN/2
N/2 & N2 g

(5.12)

, the requests arising from the first class are

(L), 00 P2 e 92 1 < i < N4,

(LY ONa 1912 1 1 P < /4.
Using this reasoning inductively across the set of all lengths {N,N/2,...,1}, we
conclude that the total number of LRs that need to be calculated is N(1 + logX).

So far, we have not paid attention to the exact order in which the LR calculations
at various block-lengths are carried out. Although this gave us an accurate count of
the total number of LR calculations, for a full description of the algorithm, we need
to specify an order. There are many possibilities for such an order, but to be specific
we will use a depth-first algorithm, which is easily described by a small example.

! Actually, some LR calculations at length N/2 may be avoided if, by chance, some duplications
occur, but we will disregard this.
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| We consider a decoder for a code with parameter (N,K, .7 ,ugc) chosen as
| (8,5,{3,5,6,7,8},(0,0,0)}. The computation for the decoder is laid out in a graph
i as shown in Fig. 10. There are N(1+ logN) = 32 nodes in the graph, each respon-

sible for computing an LR request that arises during the course of the algorithm.
Starting from the left-side, the first column of nodes correspond to LR requests at

| length 8 (decision level), the second column of nodes to requests at length 4, the

third at length 2, and the fourth at length 1 (channel level).

Each node in the graph carries two labels. For example, the third node from the
bottom in the third column has the labels (yg, Iy ®14) and 26; the first label indicates

| that the LR value to be calculated at this node is Léz) (yg, ity @ i14) while the second

| label indicates that this node will be the 26th node to be activated. The numeric

graph.

labels, 1 through 32, will be used as quick identifiers in referring to nodes in the

The decoder is visualized as consisting of N DEs situated at the left-most side of
the decoder graph. The node with label (3, 12'1“1) is associated with the ith DE, 1 <
i < 8. The positioning of the DEs in the left-most column follows the bit-reversed

index order, as in Fig. 9.

i yj‘ 7

1 2 3

8 -4 4 oo 4 L .
1>41) 1R DU ,) 7,0y Dy B Bily)
2 2 23

4
3

8 2

1,4 1 2h) V3
1 8 6 7
~ 4 /r6 6 ~ ~
(Y?,u?) ul,e ul,o) (.Y37 '® }?
2 0 24 8
(y§> 1)

16 9 10 11

1) (6% ﬁ?,e) 08,0 0 Y6

28 25 26 12
. 3

?7' 1) 6 % 7 y_7

20 19 13 14

?v 1) 0’5 ﬁﬁte 8,12 8

32 31 27 15

Fig. 5.3 An implementation of the successive cancellation decoder for polar coding at block-length

N =8.
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Decoding begins with DE 1 activating node 1 for the calculation of Lgl)(yﬁg).

Node 1 in turn activates node 2 for L‘(‘]) (y‘l‘) At this point, program control passes
to node 2, and node 1 will wait until node 2 delivers the requested LR. The process
continues. Node 2 activates node 3, which activates node 4. Node 4 is a node at the
channel level; so it computes Lgl)(yl) and passes it to nodes 3 and 23, its left-side
neighbors. In general a node will send its computational result to all its left-side
neighbors (although this will not be stated explicitly below). Program control will
be passed back to the left neighbor from which it was received.

Node 3 still needs data from the right side and activates node 5, which delivers
Lgl)(yz). Node 3 assembles Lgl) (y}) from the messages it has received from nodes
4 and 5 and sends it to node 2. Next, node 2 activates node 6, which activates nodes

7 and 8, and returns its result to node 2. Node 2 compiles its response LE‘I) (»}) and
sends it to node 1. Node 1 activates node 9 which calculates Lgl)(yg) in the same
manner as node 2 calculated Lgl)(y‘l‘), and returns the result to node 1. Node 1 now

assembles L,(;) (%) and sends it to DE 1. Since u; is a frozen node, DE 1 ignores the
received LR, declares #; = 0, and passes control to DE 2, located next to node 16.

DE 2 activates node 16 for ng)(yg,ﬁ 1)- Node 16 assembles ng)(yg,z‘q) from

the already-received LRs Lgl)(y‘f) and Lgl)(yg), and returns its response without
activating any node. DE 2 ignores the returned LR since u; is frozen, announces
i, = 0, and passes control to DE 3.

DE 3 activates node 17 for Lé3) ’f,ﬁ%). This triggers LR requests at nodes 18
and 19, but no further. The bit %3 is not frozen; so, the decision 73 is made in ac-
cordance with Lg) ’f, 12:12), and control is passed to DE 4. DE 4 activates node 20

for L§4) ()/8,12?), which is readily assembled and returned. The algorithm continues

in this manner until finally DE 8 receives Lg) (»8,47) and decides 7s.

There are a number of observations that can be made by looking at this exam-
ple that should provide further insight into the general decoding algorithm. First,
notice that the computation of Lgl) (yff) is carried out in a subtree rooted at node 1,
consisting of paths going from left to right, and spanning all nodes at the channel
level. This subtree splits into two disjoint subtrees, namely, the subtree rooted at

node 2 for the calculation of L‘(‘l ) (y}) and the subtree rooted at node 9 for the calcu-

lation of Lgl ) (yg) Since the two subtrees are disjoint, the corresponding calculations
can be carried out independently (even in parallel if there are multiple processors).
This splitting of computational subtrees into disjoint subtrees holds for all nodes in
the graph (except those at the channel level), making it possible to implement the
decoder with a high degree of parallelism.

Second, we notice that the decoder graph consists of butterflies (2-by-2 complete
bipartite graphs) that tie together adjacent levels of the graph. For example, nodes
9, 19, 10, and 13 form a butterfly. The computational subtrees rooted at nodes 9
and 19 split into a single pair of computational subtrees, one rooted at node 10, the
other at node 13. Also note that among the four nodes of a butterfly, the upper-left
node is always the first node to be activated by the above depth-first algorithm and
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the lower-left node always the last one. The upper-right and lower-right nodes are
activated by the upper-left node and they may be activated in any order or even
in parallel. The algorithm we specified always activated the upper-right node first,
but this choice was arbitrary. When the lower-left node is activated, it finds the
LRs from its right neighbors ready for assembly. The upper-left node assembles
the LRs it receives from the right side as in formula (5.8), the lower-left node as
in (5.9). These formulas show that the butterfly patterns impose a constraint on the
completion time of LR calculations: in any given butterfly, the lower-left node needs
to wait for the result of the upper-left node which in turn needs to wait for the results
of the right-side nodes.

Variants of the decoder are possible in which the nodal computations are sched-
uled differently. In the “left-to-right” implementation given above, nodes waited
to be activated. However, it is possible to have a “right-to-left” implementation in
which each node starts its computation autonomously as soon as its right-side neigh-
bors finish their calculations; this allows exploiting parallelism in computations to
the maximum possible extent.

For example, in such a fully-parallel implementation for the case in Fig. 10, all
eight nodes at the channel-level start calculating their respective LRs in the first
time slot following the availability of the channel output vector y?. In the second
time slot, nodes 3, 6, 10, and 13 do their LR calculations in parallel. Note that
this is the maximum degree of parallelism possible in the second time slot. Node
23, for example, cannot calculate L](f)(yz,zh D, Dz Dily) in this slot, because
7 ® 1, ® 13 @ty is not yet available; it has to wait until decisions #, i, 43, tis are
announced by the corresponding DEs. In the third time slot, nodes 2 and 9 do their
calculations. In time slot 4, the first decision #; is made at node 1 and broadcast
to all nodes across the graph (or at least to those that need it). In slot 5, node 16
calculates 71, and broadcasts it. In slot 6, nodes 18 and 19 do their calculations. This
process continues until time slot 15 when node 32 decides #g. It can be shown that,
in general, this fully-parallel decoder implementation has a latency of 2N — 1 time
slots for a code of block-length N.

5.3 Code construction

The original polar coding paper [1] left the polar coding construction problem un-
solved. Only for the BEC, a solution was given. For the general case, a Monte Carlo
simulation method was suggested. Although the problem looked very formidable,
rapid progress has been made in this area starting with Mori and Tanaka [10] who
proposed a density evolution approach but did not address the numerical problems in
computing the densities with sufficient precision. A major advance was made by Tal
and Vardy [16] who exploited the notions of channel degradation and “upgradation”
to provide not just approximations but also upper and lower bounds on the channel

parameters, such as / (WI\(,i)) and Z (W]\(,' ) ), that are involved in code construction. This
line of work has been extended in Pedarsani et al. [12] where specific bounds on the
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approximation error were derived. The presentation below follows largely [12] and
Sasoglu [5].

For polar code construction, we seek an algorithm that accepts as input a triple
(W,N,K) where W is the B-DMC on which the code will be used, N is the code
block-length, and K is the dimensionality of the code and produces as output an
information set & C {1,...,N} of size K such that X;c ., Z(WA(,')) is as small as
possible. Finding a good frozen vector . should also be included as part of the
desired output of a code construction algorithm in general. However, if W is a sym-
metric channel then the code performance is not affected by the choice of u /< and
this second issue disappears. The following discussion is restricted to symmetric
channels and we will exclude finding a good frozen vector from the code construc-
tion problem. We use the abbreviation BMS to refer to binary-input memoryless
symmetric channels. The output alphabet for a BMS will be assumed finite but the
methods here applicable to BMS channels with a continuous output alphabet such
as binary-input additive Gaussian noise channels.

In principle, the code construction problem can be solved by computing the tran-
sition probabilities of all the channels {Wz(;l L0 <k<nl<i<2"*} created
through the course of the polarization construction, as depicted in Fig. 3.1. Such a
computation would use the recursive relations given in Proposition 3 starting with
Wl(l) = W. Altogether there are 2N — 1 channels in this collection and it may appear
that this calculation should have complexity O(N) where N = 2" is the code block
length. Unfortunately, this computation is complicated by the exponentially grow-
ing size of the output spaces of the channels involved. For example, the output of
the channel W]E,i) is the vector y¥#/~! which can take on MV2/~! possible values if
W is a channel with M outputs.

There is an exceptional case where the above recursive calculation is feasible.
If W is a BEC, each channel in the collection {Wz(':)— «} 1s a BEC and the erasure
probabilities can be calculated using the recursive formulas (2.23) with overall com-
plexity O(N). Although the channels created from a BEC W also appear to have an
exponentially growing size for their output spaces, after merging equivalent output
letters, only three letters remain: 0,1, and erasure. The BEC example suggests that
merging similar output letters may lead to a low-complexity approximate code con-
struction algorithm for general channels. This is indeed the key idea of the methods
that will be presented in the rest of this section.

Before we present the specific methods for polar code construction we need to
develop some general results about BMS channels.

5.3.1 A general representation of BMS channels
Definition 1 4 channel W : &~ — & is said to be the sum of channels {W;: 1 <i<

M} with weights {p; : 1 < i < M} if the following hold:
o {p;:1<i< M} isaprobability distribution
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o The channels entering into the sum have the form
W;: & — %

with the output alphabets %;, 1 < i < M, forming a partition of the output alpha-
bet & of the original channel:

M
7 =%, YNY;=0,i#].

i=1
o The transition probabilities are related by
W (ylx) = piWi(y|x), whenevery € %, 1 <i< M.
We write W = Z?il piWi to denote that W is a sum of channels in this sense.

Proposition 21 Any BMS channel W : {0,1} — % with a finite output alphabet can
be written as the sum of BSCs:

M
W= piBSC(g),
i=1

where the crossover probabilities €; are between 0 and 1/2.

Proof. Since W is symmetric, for each output letter y there exists a conjugate letter
¥ so that W(y|0) = W(y|1) and W (y|1) = W (3|0). Thus, each output letter, together
with its conjugate ¥ defines a BSC with input alphabet {0,1} and output alphabet
{»,7}. Some of these BSCs may have identical crossover probabilities; in that case,
we merge the BSCs with identical crossover probabilities into a single BSC. Output
symbols y for which W (y|0) = W (y|1) (which are effectively erasures) may be split

into two symbols if necessary to represent them as a BSC with crossover probability
1/2.

Example 1 A binary erasure channel W with erasure probability € can be written
as W = (1—¢€)BSC(0) +eBSC(1/2).

It will be convenient to generalize the above definitions to the case where the
channel output alphabet can be continuous. In this more general case, we may rep-
resent any BMS channel ¥ in the form

1/2
W = A f(e)BSC(g)de

where £ is a pdf on [0,1/2]. This representation covers the previous one by taking
f(e) =3¥,pid(e —&).

Given the characterization of a BMS channel /¥ as a sum of BSCs, it is easy to
see that the symmetric capacity I(#) and the Bhattacharyya parameter Z(W) can
be calculated as
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1) = 0'/2f<e>[1 ~ #(e))de
and 1/2
ZWw) = €)\/4e(l —¢g)de.

0
These parameters may alternatively be denoted as I( f) and Z(f).

5.3.2 Channel approximation

A given BMS channel W may be approximated for a given purpose by suitably ap-
proximating its characterizing pdf f. In polar coding, typically, we wish to replace
a given f with a simpler /* while keeping the approximation error, as measured
by [I(f) —I(f")| or |Z(f) — Z(f")|, small. Since both I(f) and Z(f) are continu-
ous functions of f taking values in a closed compact interval (namely, [0,1]), this
approximation problem can be solved without much difficulty. For our purposes it
will be sufficient to use the following simple “quantizer” for approximating BMS
channels.

Proposition 22 Let L > 1 be a fixed integer. For i=0,1,...,L, let &; € [0,1/2] be
(the unique real number) such that a BSC with crossover probability 8; has sym-
metric capacity 1 — (i/L), i.e., (8) = i/L. Let W be a symmetric binary-input
memoryless channel characterized by a PDF f. Let W be the channel

where

(The integrals are over [6;_1,0;) except for the last one which is over [8,_1,6L].)
Then, W) <I(W) <I(W)+1/L.

Proof. Since J#(98) is an increasing function of § in the interval [0, 1/2], we have
0= 208 <0 < -+ <& =1/2. Thus, these points partition [0,1/2] into disjoint
quantization intervals. The first half of the desired inequality is obtained as
1/2
Iw) = o f(8)[1 —5#(8)|dd

= 2 — #(8)]dé

/f (152 (8)]a3
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=I(7)

where the inequality uses the monotone increasing property of J#(6) for 6 €
[0,1/2]. To obtain the second half, we use the monotone property again but in the
reverse direction.

L5
(GESWANOIEFACI Y
i=1v0i-1
L

= ;Pi[l - (-1)/L
=I(W)+1/L.

We will show that the above type of quantization creates a degraded channel in
the following sense.
Definition2 Let W : X — % and W' : & — %' be two channels. We say that W'
is degraded wrt W if there exists a third channel P: % — %" such that

W' Ix) = X PO ().
y

We write W' < W to indicate that W' is degraded wrt W.

Proposition 23 Let W be a BMS channel and W be its quantized version as above.
Then, W < W.

Proof. We may represent the quantizer as a channel (a deterministic one).

Proposition 24 Let W and W' be two B-DMCs with W < W'. Then, W) < I(W')
and Z(W) > Z(W'). Furthermore, channel degradedness relationship propagates
through the polarization construction in the sense that

wD <), forallN=2"1<i<N.

Corollary 2 Let Wz(]) and W2(2) be the channels obtained from W by one-step po-

larization. Similarly let Wz(l) and WZ(Z) be obtained from the quantized channel W.
Then,

1070y <1m") - and 17D) <1077,

5.3.3 A code construction algorithm

We have completed intoducing the basic notions that underly the code construction
algorithm that follows. Let ¥ be a given BMS and let 7 be a downward quantization
of W with resolution L as defined above. From the identities
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1)+ 1) = 21(7)

and 1
1Y) +1077) = 21()

we obtain
rw"y — 1) + 1) — 17 = 201 (W) — 107)]

This shows that the average approximation error after one-step polarization is the
same as the error before the polarization step. Since the two difference terms on the
left are non-negative (channel degradedness) and the difference term on the right is
bounded by 1/L, we have

1wy 1)+ ) - 10vP) < 2/L.

Thus, the average absolute error is also bounded by 2/L. The fact that we have a
bound on the absolute error is essential for the final result.,
While the quantized channel 7 has at most 2(L + 1) output letters, the channels

Wz(l) and Wz(z) have many more output letters. The idea of low-complexity polar

code construction is to quantize the channels Wz(l) again before continuing with the
next step of polarization. The method can be described more precisely by referring
to Fig. 3.1 again. The quantization procedure replaces the root node by # before
applying the first polarization step. The two channels created at level 1 are now
Wz(]) and Wz(z). Before continuing further, these channels are quantized to resolution
L and polarizationis applied to obtain the four channels at level 2. We shall abuse the
notation to denote by {Wz(,',)_ ;10 <k<n,1<i<2"*} the channels obtained in the
course of this quantize-polarize procedure. Each branching point in Fig. 3.1 causes
an incremental quantization error. The average quantization error at each node is
bounded by 1/L. An inductive argument shows that the overall average absolute
quantization error at level & of this procedure is bounded as

S W, 1w <KL, k=1,...n (5.13)

In particular, the average absolute quantization error at the last level is bounded by
n/L. We conclude by Markov’s inequality that at least a fraction 1 — /n/L of the
quantities {I( WA(,')) :1 <i< N} are computed with an error not exceeding \/n/L.
(It is here that having a bound on average absolute error is crucial.) By taking L =
n%, one can ensure that, with the exception of at most a fraction 1/+/n, the terms
{7 (WA(,'))} are computed with an error not exceeding 1/+/n. This means that with a
negligible loss in rate we can identify the good coordinates. The overall complexity
of this calculation is roughly O(L*>N) or O(Nn?) if L is chosen as n°.
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Assumption on channel inputs

Throughout we assume that channel input random variable X is
unifom on {0, 1}.
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Capacity with uniform inputs
The capacity of a binary-input channel W subject to using the
inputs equiprobably is given by
(W) 2 1(X;Y)

where the channel input random variable X is uniform on {0, 1}.
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Capacity with uniform inputs

The capacity of a binary-input channel W subject to using the
inputs equiprobably is given by

(W) 2 1(X;Y)
where the channel input random variable X is uniform on {0,1}.

More explicitly,

Wb
TW([0) + FW(/D)

(W) = 3~ SW(ylx)log

Xy
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Symmetric channels

If the channel has sufficient symmetries, /(W) equals the true
channel capacity.
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Symmetric channels

If the channel has sufficient symmetries, /(W) equals the true
channel capacity.

Examples:
BSC(e)
0 e 0
€
€
1 T 1
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Symmetric channels

If the channel has sufficient symmetries, /(W) equals the true
channel capacity.

Examples:
BEC(¢)
1
0 w0
€
?
€
1w 1 —e 1
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Cutoff rate, Bhattacharyya parameter

2
e
A

where Z(W) is the Bhattacharyya parameter

Z(W)=>_ VW(ylo)W(y[1).
y =,

For binary-input channels with uniform distribution on inputs, the N\F
cutoff rate equals SN N
S
/QD z p [ o
Ro(W) = log 1+ Z(W) S TTm)
) | R,
—:1 7 & ,// _//j ,(’

. 0S5y, D T Y Wyl A
?e = g‘i”’”j = Vel e Ve | = < Wi ;/iO
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» The sequential decoding (Wozencraft, 1957) method achieves

Ro(W) with low complexity.

: L . )

What is the significance of Ry(W)? P L 20w
< - o/

(w))
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What is the significance of Ry(W)?

» The sequential decoding (Wozencraft, 1957) method achieves
Ro(W') with low complexity.

» Came to be regarded as “practical capacity” for a while.
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What is the significance of Ry(W)?

» The sequential decoding (Wozencraft, 1957) method achieves
Ro(W) with low complexity.

» Came to be regarded as “practical capacity” for a while.
» But Ko(W)is a ‘flaky" parameter: it can be created or
destroyed.
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What is the significance of Ry(W)?

» The sequential decoding (Wozencraft, 1957) method achieves
Ro(W) with low complexity.

» Came to be regarded as “practical capacity” for a while.

» But Ro(W) is a ‘flaky” parameter: it can be created or
destroyed.

» In a sense polarization is a method of boosting Ry to channel
capacity.
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The significance of Z(W)

Recall the definition:

Z(w) = 3 VWHIWHI).
y

» Z(W) is an upper-bound on uncoded bit error rate
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The significance of Z(W)

Recall the definition:

Z(W) =) VWHIOW(y[D).

y

» Z(W) is an upper-bound on uncoded bit error rate
» Z{W) == 0 iff the channel is perfect
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The significance of Z(W)

Recall the definition:

Z(w) =3 VWI)W(y1).

y

» 7(W) is an upper-bound on uncoded bit error rate
» Z(W) = 0 iff the channel is perfect
» Z(W) == 1 iff the channel is useless
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The significance of Z(W)

Recall the definition:

v

v

v

v

Z(W) = VWo)W(y1).

Z(W) is an upper-bound on uncoded bit error rate
Z(W) = 0 iff the channel is perfect

Z(W) = 1 iff the channel is useless

Easier to track than Ro(W)
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The significance of Z(W)

Recall the definition:

Z(W) =" VW(y[o)W(yD).
y

Z(W) is an upper-bound on uncoded bit error rate
Z(W) = 0 iff the channel is perfect

Z(W) =1 iff the channel is useless

Easier to track than Ry(W)

Gives a bound on the error probabilities in successive
cancelation decoding
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For any w,
I(W)=1 iff Z(W)=0 iff Ry(W)=1

and
I(W)=0 iff Z(W)=1 iff Ry(W)=0.

Proof: Given in the next presentation.

Polarization
@0000
GO0

Basic module for a low-complexity scheme

Combine two copies of W
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Basic module for a low-complexity scheme

Combine two copies of W

U X Y
i 1wl
Uz ' X2 W _2/2

Gy

Polarization
@0000

Basic module for a low-complexity scheme

Combine two copies of W

U X; Y]
o 1wl
Uz ' X W _1’2

G

and split to create two bit-channels

W~ Lﬁ_—+ ()ﬁj YE)
bd/ﬂ— : (/2 — (\/i, )/2, (/1)
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The worse channel W

W, vfud

<0 W
Lo [T
u

r—

\/\jz \{\)\{Zf u“;

RISEHD)
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The worse channel W

W

. U1 — (Y}_, ‘?/’2_)

- : L, U L { Y B e IR R
= WO R v ol 7.
{ o
2 vandom 14 ’7(1 W _i”z ﬂ T IR ’"“} ”””” —
= Z _\; W?Y‘E‘{ \ JQL}{Q) ,‘!M') S ol ( { _i‘.,a ;E,
Uq “ - /ﬂ\/méfV%’J“f‘ (97’8/0 613 fid E T VT
:‘jj% \M@U) Jﬁ iiﬁj L/<’>Yw} H \
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The better channel W~

W : U, = (Y1, Yo, Ur)

1!

3 w\ A
,’?/\)} izj
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The better channel W™

W+ : Ug — (Yl, Yg, Ui)

/( 1) k
L |
4 SN
» oY g
(W) = 1(Uz; Y1, Y5, Uy) / U e
N
we N ) \ﬁ v
- ( é(;i : ”ﬁgf
O ywesdd ph Fre ‘wf/w .{29 L
G g «,“ g
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Capacity conserved but redistributed unevenly
U1 X1 il _f1
Uz | X2 | W f—p

HW™) + (W) 7{2“%@ j

I ‘_‘izw,_.wﬁ e

» Conservation:

AN

Letup Polarization
SOHCOUOHHD 00080
SHORO

Capacity conserved but redistributed unevenly

U X Y,
1 1w L
Uz X W_l’z

» Conservation:

(W) + (W) =21(W)
» Extremization:

(W) < I(W) < (W)

with equality iff /(W) equals 0 or 1.

SRR LR
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decoding Uy
uw —— w P2
m ~@- o I
n2 \fXZ w |2
n3 Xy W R

ni, n2, n3 are i.i.d. Bernoulli 1/2 “noise.”

Polarization

90000

decoding Uy with equivalent noise model

Ui Xf oy pn
ny %l w |

ny —}—)52— w2
3! Xa W | Y

ny, mp, nj are i.i.d. Bernoulli 1/2 “noise.’
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Identlfy the Channel W ,,,,,,,,,, n

Uy D X1 e | 7
m Xlow e

no e Xo W | V>
n3! X[ e

w=: Ul - Y1Y2Y3Y4

Polarization
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. decoding U given U

known u; O q Xl
m %l w P
Us ( X2 Y

ns/ X[

W=t : U, = YiYaYsYsUy
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. decoding U; given U; and U,

known U, (D G Xy |1
U o ow |
known U, G 13(2 w22
n Xl oy [

n is Bernoulli 1/2 noise, U; and U, are known.

Polarization
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. decoding U; given Vi and V)

Vi _@ﬁ_ w ‘ | Y1

Us —(E£ 61w |5
Va _CLX2 W e

n Xt L Vs

n is Bernoulli 1/2 noise, V4 and V5 are known.
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. identify the channel W+~

Vi =={: X1 w —-Zi
U —( %l ow P
Va _\Jﬁ wop
n | Xa W | Vs

w+- Us = Y1YoYaYa Vi Vo

Polarization

90000

. decoding U, given Uy, U, and Us

known U, S Xl oy |0
known u; — L X3 L3
known U, A w -

Uy X4 w | Ya

U1, Uz, and Us are known.
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. decoding U, given Vi, V5, and U

) X
vi <P

X3

known uUs —&

X 1%
v 4wt

X, Y.
U4 . - w o *

U3 is known, V; and V5 are known.

Polarization

L
80000

identify the channel W+

v Q+ Xl o kN
Us —(E£ 50w BB
v, =f\ X2 W e
Uy ¢ X w Y4

W™t is the channel UstoY; Yo Y3YaVqVols
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Size 8 construction

(VY]
“Z@
A
U~
—
Uy \/\/4 w X4
N
U W~ wl Xs
o) %
-%N
Us w m\ W X6
D
U it i X;
o)
U s -
8 W™ ) Xg

Polarization

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

w
0 1—¢
€
€
1 -
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Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

Demonstration of polarization 2
o QHJ o gt
i = f/

W is a BEC.
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Polarization for BEC(3): N = 16

Capacity of bit channels

0.9

0.8|-

0.2}--

0.1

1
6 8 10
Bit channel index

Polarization
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Polarization for BEC(3): N = 32

Capacity of bit channels

0.9|-

08|~

Capacity
o o o o
kS w o ~

I3
w
T

a1 1 B8 L

8 N=32

10 15 20
Bit channel index

30
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Polarization for BEC(3):

N = 64

Capacity of bit channels

0.9

08

Capacity
o o o °
S w L) ~

o
w

o
N

0.1

30 40
Bit channel index

Polarization
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Polarization for BEC(5):

N = 128

Capacity of bit channels

0.9

0.8

Capacity
© o o o
EN o [} ~

o
w

o
N

0.1

T

60 80
Bit channel index
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Polarization for BEC(3): N = 256

Capacity of bit channels

1 T = L I o T ¥ s -‘:'H"‘_ *.,_,n Cad
B a - - LI L]
09 a s - . i
« e
L] L] b =
08 . a » i
Y s
- a
07} ; e ]
N . s
0'6 |- a |
a
§ 05l s . i
a
(&) s
04l - : -
L] = 1]
N
03[ = s )
0.2} 2 ] ® - n -
} X S
s ®
0.1 o B s = i
° . " : e N=256
N a =

0 st _l.!. L] .ﬂ- J— !L L I.—r]
50 100 150 200 250

Bit channel index

Polarization
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Polarization for BEC(3): N = 512

Capacity of bit channels

1 T = T - Ter S8 L >
: - ° : s s @ @ e "l fﬁ
09 a a , @ 2
9 ° - B
= L] ° a I. " L] e
M a
08} o : aom e : = 1
® ] L a
0.7 Boog o ® - = = .
8 ‘a ® B
. 0.6 Ja ° (] R 7
= L]
S sl . . ]
o = L
[ B
(6] s . .t
04| @ . 4
L '] L] B
Lo e
0.3} ° " . a %= *
s a ® .
L " ] ] i
0.2 B .
M i
- L] .. " | 8
01 - a2 a = 8 2 .
: 8 1] = a B8
8 a s 8 @ Ba = a -
0 ) R B e LI o S nestZ
50 100 150 200 250 300 350 400 450 500

Bit channel index
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Polarization for BEC(3): N = 1024

Capacity of bit channels

1 T FT T 'ﬁ"*p——1ﬂr-ﬁqrr—-q'-'-'--q-
f? L .:-g s & '-f H
a s "% @ @ B -
09k . a % e . i= By Ll B
s 8 " L]
a8 " " ) ] )
081 LA 8 LE ° 1
" PLL) a " = "
a - st =
0.7 . " 5, 1
a L) B
] B om @
06 ? ] 8 -8 o b
>
©
805
©
(@]
0.4
0.3
0.2
0.1
O

400 500 600
Bit channel index

Polarization
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Polarization and rate of polarization

The bit-channel capacities {/(Wlﬁl"))}
the construction size N grows

[ ho. channels with I(W,E,i)) >1-6

N

and ) _
no. channels with I(W,E,')) <0

N

polarize: for any ¢ € (0,1), as

] — (W)

}—>1—I(W)

This result holds with § = O(2N7) for any fixed 3 < 1/2.

O

e

Proof: To be given in the next lecture.

.
.

é?é

y
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Polar code example: W = BEC(3), N =8, rate 1/2
I(wi)
0.0039 s S— ()ﬁ'@—lﬁ
0.1211 Uz D D [@Jz
0.1014 Us —ﬂ) ) [@13

0.6836 Us A @_}’4
0.3164 Us —¢ @_ﬁ
m Yo
0.8086 U6 A\ W
s Y7
08789 b —@ (w2
0.9961 Us @—l/s

N
N\
D
1/

Encoding
800

. 1
Polar code example: W = BEC(3), N = 8, rate 1/2
(W) Rank
%
0.0039 8 b —P D {}JE—»I
0.1211 7 Us D —® @12
%
01914 6 Us —P P lev:l—'3
U P Ys
0.6836 4 A @ w
v,
0.3164 5 Us —D S @.—»5
D Ye .
0.8086 3 Us — - @—»
08789 2 U —@ w B
. —D

0.9961 1 Us J@»Y"
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Polar code example: W = BEC(3), N =8, rate 1/2

(W) Rank
0.0039 8 Uy —j? (P D- {WI Y1
0.1211 7 U, D Cf { Wl L)
0.1914 6 Us —P D {WI Y3
m Ya
0.6836 4 Us Ve W
0.3164 5 Us —@ D DW Ys
Fan Ys
0.8086 3 Us @ W
D Y7
0.8789 2 Ur —D w
0.9961 1 data Ug =W| Ys
Encoding
@00 s
. 1
Polar code example: W = BEC(5), N = 8, rate 1/2
1(w;) Rank
0.0039 8 Uy :(E D D IWI Y1
0.1211 7 U, () {f {WI Y2
0.1914 6 Us —B CE {Wl Y3
( D Ya
0.6836 4 Us o W
0.3164 5 Us —P D IWI Ys
rany Yo
0.8086 3 Us S w
0.8789 2 data Uy —D JIZI_QG
. Ys
0.9961 1 data U W
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Polar code example: W = BEC(%), N =38, rate 1/2

(w;)
0.0039
0.1211
0.1914
0.6836
0.3164
0.8086
0.8789

0.9961

Rank

data

data

data

U3 —(

Vs
v
D
v
I B3 l
S

L
N
oD
L/

I 2 |

X

Us —Q

 ——0 [}

Encoding
@00

Polar code example:

(wy)
0.0039
0.1211
0.1914
0.6836
0.3164
0.8086
0.8789

0.9961

Rank

data

data

data

data

W = BEC(3), N = 8, rate 1/2

Y1
U — O} C}% w }-*
U D D {w |l2
Us

&
&

Us

D
=
<

Y
s ——0 W}
v —0 g
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Polar code example: W = BEC(5), N = 8, rate 1/2
I(W;)  Rank

00039 8 frozen Up —D—D (\f_{E_l’l
01211 7 frozen Up o & @_1’2
0.1914 6 frozen Us —) D IZI_&
: Pany Ya

06836 4 data Uy @ W
03164 5 frozen Us —P) o) @_2’5
D Yo

0.8086 3 data Us @ W
08789 2 data Uy — @17
iy Y

09961 1 data Us W

Encoding
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Polar code example: W = BEC(3), N = 8, rate 1/2

I(W;)  Rank
Y;
00039 8 frozen 0 — D Oi@"l
0.1211 7 frozen ¢ D D [W:I—Iz
. \\J 1/
Y-
D D 3
0.1914 6 frozen 0 —) & @—»
0.6836 4 data U, an Ya
. <i 4 \H W
Y:
pany fan 5
0.3164 5 frozen o —( & @—»
0.8086 3 data U an Ys
. 3 6 NV w
. T\ Y7
0.8789 2 data Uy —_\r w
3 Ys
0.9961 1 data  Ug w
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Proof:

» Polar coding transform can be represented as a graph with
N1 + log(N)] variables.

Encoding
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i

Proof:

» Polar coding transform can be represented as a graph with
N[1 + log(N)] variables.

» The graph has (1 + log(N)) levels with N variables at each
level.
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Proof:

» Polar coding transform can be represented as a graph with
N[1 + log(N)] variables.

» The graph has (1 + log(N)) levels with N variables at each
level.

» Computation begins at the source level and can be carried out
fevel by level.

Encoding
o880

Encoding complexity

Proof:

» Polar coding transform can be represented as a graph with
N[1 + log(N)] variables.

» The graph has (1 + log(N)) levels with N variables at each
level.

» Computation begins at the source level and can be carried out
level by level.

» Space complexity O(NV), time complexity O{N log V).
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Encoding: an example
frozen G:ﬂ) <> ‘C )—LI__VV_’—YI
frozen 2 {} q > —@—Y 2
frozen Q—:\f> q} —{E—Y 3
frozen 0:\,-3 —() —@—I 5
free X e D @-»Yﬁ
free 0—<>— EVV—J—I 7
free

Encoding
ooe

Encoding: an example

frozen 02(}0 CKL (?:@—»Yl

frozen 2 0 {) () @—IQ

frozen O—CJLi q> @—lﬁ
free L E <) @—X“

frozen 9—:() 1 P @15
free L l{ﬁ @—Yﬁ
free O:CD L EI—»Y7
free X
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Encoding: an example
frozen 0—() 0 J\} i {};@—z/l
frozen 0 0 () 1 C} @—ZZ
frozen 2L L o @_2’3
free L 1 1 ( D { w |—VY4
frozen 2 QD 1 C}O { w |—->Y5
free 1 1{) 0 @—Yé
free O{P 1 1 { w |->Y7
free L |1 1 I Wl Ys
Encoding
008
Encoding: an example
frozen _0-—-(> 0 C) 1 (%ﬁ
frozen 2 0—() 1 C) 1 @—YQ
frozen 0:() 1 1 CP Y w Y3
free L 1 1 Q 0l LY
frozen _O;C>1 J\}O { w Ys
free L 1—() 0 0 @—Xﬁ
free 01 1 1 E_)ﬁ
free 1 1 1 I IRE
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Proof: Given below.

Decoding
080000000000 000000

SCD: Exploit the x = |a]a + b] structure

uy S © by D X1 . Y1
u D by §> X2 @_)@
us —— bs @D X3 @_)@
Ug by D X4 @_ﬂ

N 41 X5 @_YS
X6 @_}/6
_J\\ﬁ 43 X7 @_)/7

u a X
8 4 8 @_}/8

)
ﬂ\

o

)
D
N

£

N
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00®000000000000000

First phase: treat a as noise, decode (uy, u, us, Ug)

u __69_@ z;};L \+ X1 4t
uz D b D | x @__)@
us —® by o X3 @_)/3
ug by @ X4 @_}/4

noise a X5 @_}/5

noise a» X6 Y6
< {WI—
noise as X7 D_)’?
: w
noise a Xs . Y8
——————.——W

065806000000000000 <.
End of first phase
" —O— "
i © b -2 w2
flg _63 b @ X3 @_yg,
{ia by @D X4 @_)/4
us _69__(-\ g1 X5 @_}’5
i
Up -2 X6 @_}’6
U_ o a3 X7 @_)/7
US‘T a4 Xg V8
' Hwl-
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00008#0000000000000 il

Second phase: Treat b as known, decode (us, ug, U7, Ug)

known 51 - 34!

known f)g __(_D__)Q
known by o\ @_)%

known by @ DW )Z!

Us__ m M FL Y5
A \ @_

Us M | d2 Y6
\W @_

uz ~ 63 y7
—0- -

ug dq @_)/8

Decoding v
000008#000000000000 P
Ui m M D1 ML 7
— Y \\f‘JL—MZI_
us T\ b M | X2 Y2
D e }Wl—'
uz by m | |X3 Y3
— D {WI—
ug b X4 4
D [wh-
noise ay X5 [ Y5
noise an X6 16
noise as X7 [ y7
noise as _| X8 .W y8
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Equivalent channel model

b +X1 )41
by D XQ@_)Q
by o) X3 @_)/3
by {E X4 @_)/4
noise ay X5 @_)/5
noise a» X6 Y6
noise as XU@_W
noise as _| X8 - Y8

Decoding
0000000800000 00000

First copy of W~

by ~<1 B_Vl
N H e

noise aj X5 D__YS
& ‘/i/




Decoding
00000000®000000000

CC— D22 W]

noise an X6 16

Decoding
000000000 ®O0000000

Third copy of W™

b X3t ¥3
-

noise as Xy 7
: ] W}-~
[




Decoding

0000000000®0000000

Fourth copy of W~

S

| /’ M-M w4

noise az _| X8 DW 8 f‘

Decoding
00000000000BO00000

“143 /Dbl e (y1,s)
us ,

D by - — (y2,¥6)
B_0 bs - — (r3,37)
U4 b4 W— e (Y47}/8)
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000000000000 ®O0000 kil

b = |t|t + w|

u W b )
1 E)‘ 1 C) 1 W I (}’1 Y5)
u» Wo b )
-1 - L (2, %)
Us__ b bs w- — (r3,57)
ua fo b4 wW- _()/47}/8)

Decoding oy nc o
0000000000000 ®#0000

Decoding on W~ )/
?é// Z/L, B orged

uy C)Wl w-- ()/1,)/3,)/5,}’7)

up wo W-— (Y2,)’4a}’6a}/8)

1




Decoding
0000000000000 0$000

Decoding on W

uy e — 1,52, y8)

Decoding Lo
00000000000000®000 il

Deco d i ng on W

uy W——- _(Y17)/27-~7)/8)

Compute
- A W=="0n,...,ys | u1 =0)
W——_(yl,...,yg ’ uy = 1)'




Decoding 4
0000000000000 0S8000 &

1 W-—— ______(Y1>)/27---a)’8)
Compute
—— A W=="(y1,...,y8 | 1y =0)
w- ()/1>-~-7Y8|U1:1)'
Set

if ty is frozen

Decoding Con
0000C000000000SC0O0 i

DQCO d in g on W

u w-—- ._(y17y27"'7y8)
Compute
j——- A "0,y |1 =0)
(1,8l =1)
Set

w
W
by = {9 else if L~~~ > (




Decoding
0000000000000 08000

Decoding on W

uy W-—— _()/17_)/2’"‘7)/8)
Compute
L‘“éW “(y1,.--5y8 | U1 =0)
W===(y1,...,y8 |11 =1)
Set
nol (\
i Decoding ’
known oy D- W-- (Y1, Y3, Y5, ¥7)

uz

I (Y2a}’47)/67y8)
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000000000000000®00 <

Decoding on W

u» V— (Y1,~-->Y8,fll)

Decoding £
0000000000000 00R00 ¢

Decoding on W

u» wW——+ (yla"'a}/87a1)

Compute

(

L_7+ é W-—— yl,...,yg,fll I U2-'—_-0)‘
W= (y1,...,y8, 01 | up = 1)
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0000000000000 00®00

']

IS

Decoding on W~

u2 w-—+ ___(YI,---;}/Safll)
Compute
L__+ é W__+(.y1a REEPL:D) Z\Il I U = O)
W==*(y1,...,y8,01 | up =1)
Set

up  if s frozen

=14 )

Decoding
[sle]eleTsleloloTolalalelolole] lule]

D@CO d! n g on W
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Complexity for successive cancelation decoding

» let Cy be the complexity of decoding a code of length NV
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Complexity for successive cancelation decoding

» Let Cy be the complexity of decoding a code of length N

» Decoding problem of size N for W reduced to two decoding
problems of size N/2 for W™ and W~
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Complexity for successive cancelation decoding

» Let Cyy be the complexity of decoding a code of length N

» Decoding problem of size N for W reduced to two decoding
problems of size N/2 for W~ and W+

= So

for some constant k
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Complexity for successive cancelation decoding

v

Let Cy be the complexity of decoding a code of length N

v

Decoding problem of size N for W reduced to two decoding
problems of size N/2 for W~ and W™

» So
Cn =2Cpjp + kN

for some constant k
This gives Cy = O(Nlog N)

v
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Performance of polar codes

Proof: Given in the next presentation.
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Proof: Given in the next presentation.

Construction
MBI o] )

Polar coding summary

Summan

Given W, N = 2", and R < I(W), a polar code can be constructed
such that it has

» construction complexity O(Npoly(log(N))),
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Polar coding summary

Given Wv, N #2", a H Iar . can be cducted
such that it has

» construction complexity O(Npoly(log(N))),

» encoding complexity ~ Nlog N,

Construction
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Polar coding summary

Given W, N - 2" and R < (W), a poIavr co‘d cnrﬁv‘cd
such that it has

» construction complexity O(Npoly(log(N))),

» encoding complexity ~ Nlog N,

» successive-cancellation decoding complexity = Mlog N,
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Polar coding summary

Given W, N=2" and R < /(W) a polar code can be constructed
such that it has

» construction complexity O(Npoly(log(N))),
= encoding complexity =~ Nlog N,
» successive-cancellation decoding complexity = N log N,

» frame error probability P{N,R) = o (2 """ "‘W"*""{\’W)>.
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Given two copies of a binary input channel W: Fy — Y

X1 = w — Y1

Xp = 4% — Y5




Iding block

Given two copies of a binary input channel W: F, — Y

o
Y
S

@ Set Uy
X1 =U+ U

_>Y1

X = U,

U, w

Y,

with Ui, Us i.i.d., uniform on [F5.

ilding bl

Given two copies of a binary input channel W: Fy, — Y

o Set Ui O— w — Y1
X1=U+ U
Xo = Uy
Uy w Y

with Uy, Us i.i.d., uniform on F5.

)

@ This induces two synthetic channels W™ :




Given two copies of a binary input channel W: Fy, — Y

@ Set U—0o— W =M
X1 = U+ Uz
Xo= U
U w — Y>
with Uy, Us i.i.d., uniform on F».
@ This induces two synthetic channels W™ : [, — V2 and

W“ Fg ey }}2 X lri‘—g

Given two copies of a binary input channel W: Fy, — Y

@ Set Uy
X1=U+ U

Xo = U

o

— Y1

Uz
with Uy, U, i.i.d., uniform on [».

@ This induces two synthetic channels W™ : F, — V2 and

] ;2 B

w

— Y,

@ How come U; appears at the output of WT? Are we being

cheated?




.

.

(a) with a genie-aided decoder:

th = ¢ (Y)
Uy = ga(Y, )
Us = ¢3(Y, U?)

Un = on(Y, UM

 Building block: st (;{ctéssive)d‘écmsddling;j

Consider successively decoding Uy, Us, .

.., Uy from Y

Consider successively decoding Uy, Ua, ..

(a) with a genie-aided decoder:

0 = $1(Y)
U, = ¢o(Y, Uh)
Us = p3(Y, U?) vs

UN = ¢’N(Ya UN_l)

iccessive decoding

., Uy from Y

(b) a Standalone decoder:
0y = éu(Y)

02 = ¢2(Y, E”l)

03 = ¢3(Ya 02)

UN = ¢N(Y, 0N~1).




; block: su’cc’e’s’sifvé decoding

Consider successively decoding Uy, Uy, ..., Uy from Y
(a) with a genie-aided decoder: (b) a Standalone decoder:
U = ¢1(Y) U = ¢1(Y)
Uz = ¢a(Y, Un) Uy = ¢o(Y, )
Us = ¢3(Y, U?) v Us = ¢3(Y, U?)
Un = ¢n(Y,UNT) On = on(Y, UMY,

If the genie-aided decoder makes no errors, then, the standalone
decoder makes no errors.

Consider successively decoding Uy, Uy, ..., Uy from Y
(a) with a genie-aided decoder: (b) a Standalone decoder:
U1 = ¢1(Y) Oy = ¢1(Y)
Us = ¢2(Y, Uh) Uy = ¢o(Y, Un)
Us = ¢3(Y, U?) v U5 = ¢3(Y, U?)
On = on(Y,UNT) On = ¢n (Y, 0M).

If the genie-aided decoder makes no errors, then, the standalone
decoder makes no errors. The block error events of the two
decoders are the same.




Consider successively decoding Uy, Us, ..., Uy from Y

(a) with a genie-aided decoder: (b) a Standalone decoder:
Uy = ¢1(Y) U = ¢1(Y)
Uz = ¢o(Y, Us) U = (Y, Uh)
Us = ¢3(Y, U?) v Us = ¢3(Y, 07)
UN = on(Y, UN_I) C/N =on(Y, ON_l).

If the genie-aided decoder makes no errors, then, the standalone
decoder makes no errors. The block error events of the two
decoders are the same. As long as the block error probability of
the genie-aided decoder is shown to be small, we are not cheated.

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.




Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

@ W~ has input Uy, output (Yi, Ya) =

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

@ W~ has input Uy, output (Y3, Y2) = (Ur + Us, Us)




Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

@ W~ has input Uy, output (Y1, Y2) = (Us + U, 7))

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

@ W~ hasinput Up, output (Y1, Y2)=( 7 ,U)




Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

@ W~ hasinput Uy, output (Y1, Y2)=( ? ,7)

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =?
otherwise.

@ W~ isa BEC(2p — p?).




rasure channel

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

e W~ isa BEC(2p — p?).

@ WT has input Us, output (Yi, Y2, Ur) =

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

e W~ is a BEC(2p — p?).
e W has input Uy, output (Y1, Yz, Ur) = (Ur + Uz, Uz, Us)




Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =?
otherwise.

e W~ isa BEC(2p — p?).

o W has input Uy, output (Y1, Yo, U1)=( 7 Uy, Up)

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

e W~ is a BEC(2p — p?).

@ W™ has input Uy, output (Y1, Yo, U1) = (Ur + U, 7, Us)




Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

e W~ isa BEC(2p — p?).

@ W™ hasinput Uy, output (Y1, Yo, U1)=( 7 , 7,U1)

Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =7
otherwise.

e W~ is a BEC(2p — p?).
e WT is a BEC(p?).




Suppose W is a BEC(p), i.e., Y = X with probabilty 1 — p, Y =?
otherwise.

e W~ isa BEC(2p — p?).
e Wt is a BEC(p?).

@ We already begin to see some extremalization: W™ is better

than W, while W™ is worse.

Building block: properties

Properties of W — (W, W™):

I(W™) = I(Us; Y1Y2) U

U

Fan)

/

— Y}

. Y2




Properties of W — (W, WT):

(W) = I(Us; Y1Y2) Ui
I(WF) = I(Uy; Y1 Y2 Ur)
U

oy

r—-"yl

F__, Y,

Properties of W — (W~ , WT):

(W) = I(Ur; Y1Y2) Ui
/(W+) = /(Uz; Y1Y2U1)
I(W™)+ (W) = 1(U1Uz; Y1Y2) Uy

— Y1

i Y2




Properties of W +— (W~, WT):

/(W_):/(Ul;Y1Y2) U
I(WT) = I(Us; Y1 YaUs)

I(W™) + (W) = I(U1Ua; Y1 Ya) Uy
= 1(X1X2; Y1 Y2)

o
AV

Properties of W +— (W~, WT):

(W) = I(Uy; Y1Y2) U
/(W+) = I(UQ; Y1Y2U1)

(W) + I(WT) = (U Uz; Y1 Y2) U
= (X1 X2; Y1 Y2)

o LI(W™)+ FI(WH) = 1(W).




Properties of W — (W=, W¥):

t—n Y]

(W) =I(U;aYs) U
I(WT) = 1(Uz; Y1Y2Uh)

I(W™) + I(WT) = I(UiUz; Y1 Y2) Us
= I(X1X2; Y1Y2)

b Y5

Properties of W +— (W~, W):

(W) =I(UYs) U

I(W) = 1(U2; Y1YaUh)
(WT)+ I(WF) = (LU 1 Y2) -y,
= 1(X1X2; Y1 Y2)

o JI(W™)+ L1(W) = [(W).
o I(WH) > 1(W) = 1(W7).

A

—Y>




Properties of W — (W—, WT):
o HI(WT)+3I(WT) =1(W).
o I(WH)>1(W)>I(W™).

i

Properties of W +— (W~ , WT):
o LI(W™)+3I(WT)=I(W).
o (W)= (W) >I(W).




Properties of W — (W~ WT):

o JI(W™)+3I(WH) =1(W).
o (W) >1(W)>I1(W).

H(W*) = (W) = (W) — I(W™)

1
3

(W)

Iding block: propel

Properties of W — (W~—, W™):
o LI(WT)+3I(WH) =1(W).
o I(WH) > (W) > I(W-).

@ 'Guaranteed progress’ unless
already extremal.

(W) — (W) = [(W) — I(W~™)

1
4

(W)

=




Properties of W — (W—, WT):

o JI(WT)+i1(WT) =1(W).

o ‘Guaranteed progress’ unless 1
already extremal. 4

o [I(WE)—I(W)| < § implies

(W) & (e,1—¢),

with €(d) — 0 as § — 0.

o I(W*) > (W) > (W), I(W*) — I(W) = (W) — I((W™)

ranteed ‘pgcgréss”"

Notation: h(p) = —plogy, p — (1 — p) log,(1 — p), denotes the
binary entropy function.

Define px g := p(1 — q) + (1 — p)qg; handy when expressing the
distribution of the mod-2 sum of independent binary RVs.




Guaranteed progress

Notation: h(p) = —plog, p — (1 — p) log,(1 — p), denotes the
binary entropy function.

Define p x g := p(1 — q) + (1 — p)g; handy when expressing the
distribution of the mod-2 sum of independent binary RVs.

If (X1, Y1) and (Xa, 2 ére epve-, Xg e biry,
H(X1|Y1) = h(p1), and H(Xz|Y2) = h(p>), then,

H(Xl +X2]Y1 YZ) > h(pl * p2)

| Guaranteed progress

Notation: h(p) = —plog, p — (1 — p) log,(1 — p), denotes the
binary entropy function.

Define px g := p(1 — q) + (1 — p)g; handy when expressing the
distribution of the mod-2 sum of independent binary RVs.

If ( ) are independent, X; and X, are binary,

H(X1|Y1) = h(pl), and H(XQ'YQ) = h(pz), then,

H(X1 4+ Xa|Y1Y2) = h(p1 * p2)-

e

 Proof (Lazy).
This is just Mrs Gerber's Lemma.




IFI(W) = 1— h(p), then (W) <1 — h(p p), and thu
(W) — I(W™) = h(p * p) — h(p).

L — ?
(W) -1(w~) > h(p*p)&; h(p). %

e

Swmnsr e

Proof
From I(W) = 1 — h(p) we find H(X;|Y;) = h(p). Consequently,

W)= KU, Ye)
=1- H(U|"1Ys)
=1~ H(X1 -|—X2|Y1Y2)
< 1—h(p=p)




| Corollary

For every € > 0, there exists § > 0 such that

(W) — (W) <6

implies

3 (W) & (6,1 —¢).

See fi g re.

Recall the polar construction:




Recall the polar construction:

@ Duplicate W and obtain W~
and WT.

Recall the polar construction:

@ Duplicate W and obtain W~
and WT. —

@ Duplicate W~ (and WT),




Recall the polar construction:

@ Duplicate W and obtain W~
and WT.

@ Duplicate W~ (and W),

@ and obtain W~ and W~
(and W+~ and W),

Recall the polar construction:

@ Duplicate W and obtain W~
and WT.

@ Duplicate W~ (and W),

@ and obtain W~ and W~
(and W*~ and W),

@ Duplicate W~ (and W,
W+=, W*T) and obtain
W~~~ and W~* (and
w-—+- W‘++, w+——,
W+—+: W++_, W+++)_




Recall the polar construction:

@ Duplicate W and obtain W~ —o———'—o—D—

and WT.
@ Duplicate W~ (and W),
@ and obtain W= and W~
(and W+~ and W),

-

ol

-

o Duplicate W=~ (and W~ T, ﬂ
-

iy

LI

W*=, W*T) and obtain
W~==="and W~~7 (and
w-—+t-, w—+t+, W+__,
W+_+, W++_, W+++)_

At the nth level into this process we have transformed N = 2" uses
of the channel W to one use each of the 27 channels

Whbn e {4+, -},
The meaning of polarizatoin is that the 2" quantities
(W=7, (W)

are all close to 0 or 1 except for a vanishing fraction (as n grows).




@ Organize the synthetic channels as a tree.

- Polarization: why?

@ Organize the synthetic channels as a tree.

@ Pick a random path climbing the tree
according to fair coin flips.
This path uniformly samples
the nodes at any level n.




@ Organize the synthetic channels as a tree.

@ Pick a random path climbing the tree
according to fair coin flips.
This path uniformly samples
the nodes at any level n.

@ The I(-) sequence we
encounter satisfies

E[/;H»»l { Iy, ..., In]— -

@ Organize the synthetic channels as a tree.

@ Pick a random path climbing the tree
according to fair coin flips.
This path uniformly samples
the nodes at any level n.

@ The /(-) sequence we
encounter satisfies
E[iﬂH } oo ., l,,]: L.

@ Thus, the differences
Jp = Ihy1 — 1, are zero
mean, uncorrelated random Ww-- Ww-——-
variables.







n—1 5 n—1
01> (Ih—l)? = (ZJk) =3 Uik
k=0

i,k=0

n—1
o Thus 1> E[J].
k=0
@ So, E[J2] — 0, thus, for any 6 > 0, Pr(|J,| > &) — 0.

n—1 2 n—1
01> (h—h)?= (D 4) = D dik
k=0 i,k=0
n—1
o Thus1>> E[J].
k=0

@ So, E[J?] — 0, thus, for any § > 0, Pr(|Jn| > d) — 0.

@ By ‘guaranteed progress property’ the event {|J,| > 0}
includes the event {/, € (¢,1 — ¢€)}.




k=0 i k=0
n—1
o Thus 1> E[J].
k=0
@ So, E[J2] — 0, thus, for any 6 > 0, Pr(|J,| > §) — 0.

@ By ‘guaranteed progress property’ the event {|J,| > ¢}
includes the event {/, € (¢,1 — ¢€)}.

Thus the fraction paths for which /I, € (¢,1 — €) approaches
zero as n gets large. Done! Thanks: H.A. Loeliger

©

@ We have shown that lim, Pr{/, € (¢,1 —¢€)} = 0.




@ We have shown that lim, Pr{/, € (¢,1 —¢€)} = 0.
@ Together with E[l,] = I)(W) this implies

Pr(lh>1—¢) — (W) and Pr(l,<e)—1-I1(W).

@ We have shown that lim, Pr{/, € (¢,1 —€)} = 0.
@ Together with E[l,] = I)(W) this implies

Pr(lh>1—¢) — I(W) and Pr(ly<e) —1— I(W).

@ Even stronger statements can be made by appealing to the
martingale convergence theorem:

Pr{li'r1n I,=1}y=1(W) and Pr{li'rTn Ih=0}=1-[(W).




@ We have seen that polarization takes place.

@ We have seen that polarization takes place.

@ But how fast? Fast enough to arrest error propagation?




@ We have seen that polarization takes place.

@ But how fast? Fast enough to arrest error propagation?

@ Introduce the Bhattacharyya parameter

Z(W) =) VW(y0O)W(y[1)
y

as a companion to /(W). Note that this is an upper bound on
probability of error for uncoded transmission over W.

(W) =1-H(X|Y)
=Y W)L - HX]Y = y)]
y

= Y W(y)[1 - h(W(Oy))]




»;;;Ltasefit ré‘presﬁen,té‘tijozti

(W) =1-H(X]Y)
_ZWy) [1-H(X]Y =y)]
= Z W(y)[1 - h(W(0ly))]
Similarly
Z\/W y|0)W(y[1)
_ Z W(y)\/4W (0]y)W(1]y)
- Z W (y)v/4W(0ly)(1 — W(0ly))

Similarly
=Y VWHIOW(y1)
y
= > W(y)V4w(oly)W(1ly)
y

S W (y)/AW(0]y)(1 — W(0ly))




(W) =1— H(X|Y)

=S W()[1 - HXIY = y)]
y
= S W(y)[1 - h(W(Oly))]
y
Similarly

Z(W) = Z VW(y|0)W(y|1)

y
=" W(y)V/aw(oly)w(1ly)

= > W(y)VaAw(ly)(1 - W(0ly))
y

So

Consequently (/(W),Z(W))
belongs to the Convex hull of
the curve

{(1 - h(8),/36(1 = 9)) :

§e[0,1]}

Z(W)

0 I(w)
1




;; rization speed

Properties of Z(W): Z(W)

Properties of Z(W): Z(W)

o Z(W) ~ 0 iff (W)~ 1.




Properties of Z(W): Z(W)

o Z(W) ~0iff (W)~ 1.
e Z(W)=1iff (W) ~=0.

I(w)

Properties of Z(W): Z(W)

o Z(W)~ 0 iff (W)~ 1.
o Z(W) ~ 1iff (W) = 0.
o Z(W™) = Z(W).

(W)




o Z(W)=0iff (W)=~ 1 1

o Z(W) =~ Liff (W)=0

o Z(W*)y=Z(W)2.

o Z(Wy <2Z{W). 0 (W)

0 1
Since Z(W) upper bounds on probability of error for uncoded
transmission over W, we can choose the good indices on the basis
of Z(W). The sum of the Z's of the chosen channels will upper
bound the block error probability. Good reason to study the
polarization speed of Z.

@ Recall the channels
organized in a tree.




@ Recall the channels
organized in a tree.

@ Let Zy, Z1,... be the Z(")
values we encouter we climb
the tree.

Polarization speed

@ Recall the channels
organized in a tree.

e Let Zy,Z1,... bethe Z(:)
values we encouter we climb
the tree.

@ We know that
P(Z, — 0) = I(W).




@ Recall the channels
organized in a tree.

@ Let Zy,Z;,... bethe Z(+)
values we encouter we climb
the tree.

@ We know that
P(Z, — 0) = I(W).

@ We want to show that when
Z, — 0 it does so fast.

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0,0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oc fast
when it does.




@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oco with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey

Vior1 =2V, for a ‘plus’ move
Vor1 < V41 for a ‘minus’ move

@ It is more convenient to work with V), = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vot1 =2V, for a ‘plus’ move
Vor1 < Vo, +1 for a ‘minus’ move
¢ E.g., starting with V,,, = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by

20,




ization spee

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

¢ V,'s obey
Vor1 =2V, for a ‘plus’ move
Vi1 < V,+1 for a ‘minus’ move
¢ E.g., starting with V,, = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by
—20, —19,

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vot =2V, for a ‘plus’ move
Virr < Vp+1 for a ‘'minus’ move
@ E.g., starting with V,;, = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by

~20, —19,-18,
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Polarization speed

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vo1 =2V, for a ‘plus’ move
Visri < Vo +1 for a ‘minus’ move
¢ E.g., starting with V,,, = —20, and sequence moves: —, —, +,
-, —, 4+, +, —, we will see a sequence dominated by

—20,-19,—18,—36,

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —co fast
when it does.

@ V,’s obey
Vpt1 =2V, for a 'plus’ move
Vpr1 <V, +1 for a ‘minus’ move
@ E.g., starting with V,,;, = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by

—20, —19,—18,—36,—35,




@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0,0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vir1 =2V, for a ‘plus’ move
Vor1 < V,+1 for a ‘'minus’ move
¢ E.g., starting with V,,, = —20, and sequence moves: —, —, +,
—, — +, +, —, we will see a sequence dominated by

—20,-19,—18,—36,—35,—34,

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0,0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vg1 =2V, for a ‘plus’ move
Vor1 <V, +1 for a ‘minus’ move
¢ E.g., starting with V,;, = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by

—20, —19,—18,—36,—35,—34,—68,




@ It is more convenient to work with V;, = log, Z,. This takes
values in (—o0,0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

¢ V,'s obey
Vot1 =2V, for a ‘plus’ move
Visp1 < Vo +1 for a ‘minus’ move
e E.g., starting with V,, = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by

~20,-19,-18,—36,—35,—34,—68,— 136,

@ It is more convenient to work with V,, = log, Z,. This takes
values in (—o0, 0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vot1 =2V, for a ‘plus’ move
Virr < Vo +1 for a ‘minus’ move
o E.g., starting with V,;, = —20, and sequence moves: —, —, +,
—, —, 4+, +, —, we will see a sequence dominated by

~20,-19,—-18,—36,—35,—34,—68,—136,—135,




@ It is more convenient to work with V;, = log, Z,. This takes
values in (—o0,0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oo fast
when it does.

@ V,'s obey
Vg1 =2V, for a ‘plus’ move
Vis1 < Vp+1 for a 'minus’ move
¢ E.g., starting with V,,, = —20, and sequence moves: —, —, +,
-, —, +, +, —, we will see a sequence dominated by

—20,—19,—18,—36,—35,—34,—68,—136,—135,. ..

@ |t is more convenient to work with V,, = log, Z,. This takes
values in (—o0,0], We already know that V,, — —oo with
probability /(W), and want to show that it goes to —oco fast
when it does.

@ V,'s obey
Vg1 =2V, for a 'plus’ move
Vor1 < Vp+1 for a ‘minus’ move
¢ E.g., starting with V,;; = —20, and sequence moves: —, —, +,
—, —, +, +, —, we will see a sequence dominated by

-20,—-19,-18,—-36,—35,—34,—68,—136,—135,. ..
@ The amounts the ‘minus’ moves change the V values are
negligible compared to the changes made by the ‘plus’ moves.




Vor1 =2V, for a ‘plus’ move
Vi

for a ‘minus’ move

for a ‘plus’ move

n
1 = Vp for a ‘minus’ move

@ In a long sequence of moves we will typlically see an almost
equal number of + and —'s, thus

Vo = 0(=2"%) = O(—VN).




\7,,+1 =2V, for a 'plus’ move
~ 7

for a ‘minus’ move

@ In a long sequence of moves we will typlically see an almost
equal number of + and —'s, thus

Vo = 0(-2"%) = O(-VN).

@ So we expect Z, to behave roughly like VN,

e In going from V), to V,, we make n — m moves. If Sy, , of
these are ‘plus’ moves, then

Vi < [V + (n = m — Sp )25




@ In going from V,, to V,; we make n — m moves. If Sp, , of
these are ‘plus’ moves, then

Voo < [Vin + (n — m — S, p)]25mn < [V + n — m]25mn

@ In going from Vp, to V,, we make n — m moves. If Sp, , of
these are ‘plus’ moves, then

Vi < [V + (n — m — S, )]2°mn < [V, + n — m]25mn
@ Note that the bound is useful only when n < m — V,;,. So one

cannot show too strong a convergence speed based on this
alone.




l?olarlz:'ati_c_)n"~sfpeegi : ,mor,éi formally

@ In going from V), to V,, we make n — m moves. If S, , of

these are ‘plus’ moves, then
Vo <[V +(n— m — Sm p)]2°7 < [V + n — m]25ma

@ Note that the bound is useful only when n < m — V,,,.-So one
cannot show too strong a convergence speed based on this
alone.

@ But using the bound twice by introducing an intermediate
destination k:

Vo < [Vi + n — k]2%n

ol

@ In going from V, to V,; we make n — m moves. If 5, , of
these are ‘plus’ moves, then

Vi < [Vin + (1= m — Sy 2)]2%m0 < [Viy + 0 — m]25mn
@ Note that the bound is useful only when n < m — V,,. So one
cannot show too strong a convergence speed based on this
alone.

@ But using the bound twice by introducing an intermediate
destination k:

Vi < [Vi + n — k]2%%n
< [[vm Yk — m)2Smk 4 — k]25k!"




Polarizatio

If V,,, were less than —2m, we could take k = 2m, and n = m? to
obtain

Vi < [-m25mem 4 m? — 2m]252ma'"2
= [—m2’"(1'5) +m? — 2m]2(’”2_'")(1_5)/2 (typically)
— O( _ 2m2(0.5—e))

Equivalently,
Vn < O(‘NO'S-E)

@ Only thing left to show is that V,, < —2m is a typical event
for the paths where V,, — —o0.




Rplarizatlﬁn speed: more formally

@ Only thing left to show is that V), < —2m is a typical event
for the paths where V,, — —c.

@ On such paths, there wiil come a time ng so that V, < —11
for all n > ng. The evolution of V,, then satisfies

Vo1 <2V, <V, -11 ‘plus’ moves

Viri <V, +1 ‘minus’ moves

Pb‘lérileé‘tldn /{Spéed m'cré'-'forma'lly

@ Only thing left to show is that V,, < —2m is a typical event
for the paths where V,, — —o0.

@ On such paths, there will come a time ng so that V,, < —11
for all n > ng. The evolution of V,, then satisfies

Vb1 <2V, < V,-11 ‘plus’ moves

Voir1 <V, +1 ‘minus’ moves

@ Thus from ng onwards, V,, is dominated by a random walk
with average drift —5.




peed: more formally

@ Only thing left to show is that V,,, < —2m is a typical event
for the paths where V,, — —o0.

@ On such paths, there will come a time ng so that V, < —11
for all n > ng. The evolution of V,, then satisfies

Vo1 <2V, <V, -11 ‘plus’ moves

Vi1 <V, +1 ‘minus’ moves

@ Thus from ng onwards, V,, is dominated by a random walk
with average drift —5.

@ Thus at time m = 2ng the typical value of V,, is dominated
by —5ng = —2.5m < —2m, which is what we want (with
room to spare).

|

Cc.instru jcién;.,cqm\p

Let V < W denote that V is stochastically degraded with respect
to W.

lemma
IfV < W then V* < W+,

'bvio L [] {




‘)Giver; any éymmetric chénne/ W n 5 >0 ‘there /s)a symme
channel V' such that

e VW

e I(W)=-I(V)<4

@ V has an output alphabet of cardinality < 2/4.

S

Moreover, one can efficiently find such a V.

@ If we take the tree of channels,




' COF_[S’CFUC’CI'Oﬁ complexity

@ If we take the tree of channels,

@ Replace a channel on a node by
a stochastically degraded
version (E.g., replace W by a
V <X W) whose mutual
information is differs from the
original by 4, (E.g,

I(WT) = I(V)=4)

@ |If we take the tree of channels,

@ Replace a channel on a node by
a stochastically degraded
version (E.g., replace W by a
V < W) whose mutual
information is differs from the
original by 0, (E.g,

I(W*) = 1(V) =)

@ Then the average loss of mutual
information the descendants of
this node at any level equals §.







~ Construction \







_Construction complexity




@ If each of the replacements are as in

the lemma, their total effect on
average loss of mutual information on
the nth level of the tree is (n+ 1)¢

@ If each of the replacements are as in
the lemma, their total effect on
average loss of mutual information on
the nth level of the tree is (n 4 1)6

@ Choosing 6 = 1/(n+ 1)n ensures
that the average loss is at most 1/n.




@ |If each of the replacements are as in
the lemma, their total effect on
average loss of mutual information on
the nth level of the tree is (n+ 1)¢

@ Choosing § = 1/(n+ 1)n ensures
that the average loss is at most 1/n.

@ In particular the fraction of channels
that suffer a loss more than 1/y/n is
less than 1/4/n.









