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E-mail

My e-mail is 

heungno@gist.ac.kr 

I will have the whole lecture notes available at the printing 

shop. 
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Course Information 

Class hours: 10:30-12:00 am Monday, Wednesday 

Lecture room: B201 

Office hours: 

- 2:00pm - 4:00pm Monday,

- 4:00apm- 5:00pm Tuesday.

- Or make an appointment via e-mail.
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Grade Distribution 

Two exams (Midterm#l: 20%, Final: 30%) 

Homework + Homework Grading + Class Participation 

(20%) 

Term Project (30%) 

- Wireless network codes

- Compressive sensing

©200x Heung-No Lee 5 

Homework, Class-Project Policies 

Discussion and exchange of ideas are strongly encouraged. 

On each homework and class project set, a reviewer will 

be assigned ( will take turns). 

The job of each reviewer is to 

- grade homework/project sets,

- type up the best homework solution(rec. WORD with Mathtype),

- get an approval of the solution manual from me, and

- distribute the graded homework and solution to the students within

a week.
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Tentative Schedule 
Week# Date Topics HWs Note 

I 9/l(Wed) Introduction to Channel Codes (Shannon's 1948 HW#0 

oaoer) 

2 9/6, 8 Galois Fields HW#l Out 

3 9/13, 15 Polvnomials over Galois Fields HW#2Out 

4 9/20, Linear Block Codes 9/21-23 Full Moon 
Holidays 

5 9/27 29 Linear Block Codes HW#3Out 

6 10/4 6 BCH and Reed-Solomon Codes HW#4Out 

7 10/11, 13 BCH and Reed-Solomon Codes 

8 10/18, 20 Midterm Week Midterm 

9 10/25 27 Convolutional Codes 
10 11/1 3 Convolutional Codes/Trelllis Codes HW#5 

II 11/8, 10 Turbo Codes/Turbo Decoding HW#6 Asilomar Conference 

Makeup on l l/12(Friday) 

12 11/15 17 Performance Analysis of Turbo Codes 

13 11/22 24 LDPC codes/Decoding HW#7 

14 11/29, 12/1 Density Evolution/EXIT Charts HW#8 

15 12/6 8 Distance Spectrum/Tight Union Bounds 

Final 12/15 Final Exam on Wednesday 

Week Term paper/project program package due by 

Fridav 
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Scope of this course 

Learn and apply the channel coding theory to practical 

communications problems. 

❖ Learn and simulate communications systems for the purpose of

evaluating their performances.

❖ Be able to analyze the obtained simulation result and to predict the

performance of a given system, and provide a better design.

Once we know how to predict/evaluate the performance of a

communications system, we will use these knowledge and tool sets to

design a better performing communications system.

7 

❖ I say this is the way how the communications theory has been evolved.
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Text Books 

❖ Required Textbook: Todd Moon, Error Correction Coding: Mathematical Methods

and Algorithms A comprehensive introduction modem and classical error correction
coding. Wiley, 2005. (ISBN 0-471-64800-0) (FaU2006)

❖ Reference: Stephen B. Wicker, "Error Control Systems for Digital Communication and
Storage," Prentice Hall.

❖ Reference: F.J. Mac Williams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, North-Holland Mathematical Library, 1977.

❖ Reference: D. Mackay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, 2003. (Downloadable at his Web-site)

❖ Reference: T. Richardson and R. Urbanke, Modem Coding Theory, Cambridge
University Press, 2007.

Reference: IEEE Transaction Papers to be Identified During the Course

©200x Heung-No Lee 

Now, let's begin ... 
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Claude E. Shannon ( 1916 - 2001) 

❖ Math/EE Bachelor from UMich (1936)

❖ MSEE and Math Ph.D. from MIT (1940)

•!* A landmark paper "Mathematical Theory 

of Communications" (1948) 

- Founder oflnformation Theory

- Fundamental limits on communications

- Information quantified as a logarithmic

measure

❖ For more info on him, make a visit to

htt_p://www.beii-

labs.com/news/2001 /february/26/1.html
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Shannon's Perspective on Communications 

Messages Regenerate 

oe 0 0 
0. 

0 0
0 Channel 0 

Q 0 
0 0 0 0 

❖ Communications: Transfer of information from a source to a receiver

❖ Messages (information) can have meaning; but they are irrelevant for
the design of communications system.

❖ What's important then?

11 

- A message is selectedji'Oln a set o
f

a!! possible messages and transmitted, 
and regenerated at the receiver

- The size of the message set is the amount of information

❖ The capacity C of a channel is the maximum size of
message set that can be transferred over the channel and
can be regenerated almost error-free at the receiver.

©200x Heung-No Lee 12 



Digital Communication 

❖ It is to send a message index m ( out of M total) over the channel

- for the duration of time T, and

- have an expectation that the same index m can be recovered almost error-

free at the receiver.

Transmission rate R = loglM)IT [bits/sec] 

If R < C, then almost error-free recovery can be achieved. 

❖ We need to find a set of Jlf waveforms to the 

- An analog (physical) waveform shall be chosen to carry the messages.

Why?

©200x Heung-No Lee 13 

Main Story in Shannon's Paper 

❖ Given a channel relation (Y = X + N), find out the size M of the input
message set which results in very small P( e ).

- You are allowed to use the same channel many times, say n times.

❖ The strength of the noise limits the size of the input message set.
(Obvious)

+!<> Determine the range of rates R = logiM)ln that gives P( e) very small. 

There are 2nH(Xl typical input sequences of length n. 

❖ We choose 2nR messages randomly out of total 2nH(Xl typical words.

❖ We want only one message out of total 2nR messages falls into the fan
of2nH(X\Y).

©200x Heung-No Lee 14 



Shannon's Key Idea 

There are 2nH(n typical outputs.

Each input message fans out to 2nH (r�> 

2"H(r) 

❖ If we select only --. -. = 2"1 <.u 1 211H(} �\) 

number of messages, no 
equivocation would occur. 

- P(e) is close to O (LLN)

�:<$, So, such a codebook exists arid 

can be constructed, though 
difficult. 
- What if it is constructed randomly?

©200x Heung-No Lee 

X=x 

Shannon's Key Idea: 

P( e) in Random Codebook Construction 

Let's select the message 

set( Codebook) randomly. 

And, see if we can make P( e) 

very small. 

X 
2nH (X) 

X=x • 

• 

• 

• 

• 

y 
• 

• 

• 

• 

• 

• 

• 

• 

Given a fan of size 2 nH (XIY=y) 
'

decoding error occurs if 

there are more than one 

messages within the fan. 

z mi (X(Yc,)1� 

See the analysis in the 
following page 

©200x Heung-No Lee 
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Y=y 
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Shannon's Key Idea: 

P(e) in Random Codebook Construction (2) 
2nH(X) 2nH(Y) 

❖ Steps:
Select the first message (the 

red dot) and send. 

With probability close to 1, we 

get the typical outputy. 

• 

• 

• 

• • 

• • 

• • 

• • 

• • - Randomly select the rest of 

messages. 

Consider the fan of y and find 

out the probability of decoding 

error. 

2"U(XIY�y) { � 

Decoding error occurs when 

any one of 2nR - 1 other 

messages falls within the fan. 

©200x Heung-No Lee 

• 

• 

P( e) in Random Codebook Construction (3) 

nR 
( 2nH(XlY) )2 -I 

❖ P(e) = 1- 1-
2

nH(X) 

� l -( l - Tn[H(X)-H(XIY))
) 

2nR 

::::; l -( l- 2
nRTn[H(X)-H(XIY))

) 

= 
2

-n[I(X;Y)-R) 

❖ Thus, as long as R is chosen slightly smaller than I(X; Y), P( e) decreases
to zero as n increases.

- Now we maximize I(X; Y) by selecting the best input distribution, and obtain the

capacity, C = max
p(x) 

I(X; Y).

©200x Heung-No Lee 
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Channel Capacity vs. Rate Distortion 

Source-Channel Separation Theorem 

- Data compression (Rate Distortion Function) and Channel Coding can be

separately done without losing optimality.

❖ To explain, suppose

- A source is transmitting at an apparent data rate R [bits/sec/Hz] with

source coding error probability P
b
·

The true source rate then is R(l - H(P
b)), which should be smaller than the

channel capacity C for near zero transmission errors.

R(l - H(p)) < C [bits/sec/Hz] 

©200x Heung-No Lee 19 

Capacity Lower Bounds on Pb as a function of EiN 
0 

CLB is very useful later on for the course. 

- It provides fundamental bounds on bit error probability.

For a fixed _I?., v;e car1 find the capacity lower bound on 

❖ Now, what's left for us to find is the capacity at a certain E,JN0 • 

❖ Let's find the capacity expression for two cases

- A WGN channel: C(E/N
0

) 

- BPSK over A WGN channel: C(E/N
0
) 

©200x Heung-No Lee 20 



Shannon Capacity for A WGN Channel 

The channel capacity in [bits/sec] is 

C/W 
[bits/sec/Hz] 

2 

-10

©2004 Heung-no Lee 
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Practical Systems 

logil+l) 

20 SNR(dB) 

Shannon Limit 

The bit rate of the transmission 
R [bits/sec]=� [symbols/sec] x k [bits/symbol] 

<❖ Signal Power P = Energy per symbol x Baud = E
s x R

s

❖- Energy per bit E
b

= E/k

P = E
b

xR 

PIN = (Eb R)/(N
0W) 

Thus, the spectral efficiency [C/W] is 

21 

C/W = log
i(l +(E

b
/N0

)(R/W)] [bits/sec/Hz ]---------(1) 
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Shannon Limit (2) 

•!• We are interested in finding the smallest EiN
0 

such that 
error free transmission is possible 

❖ In Eq. (1), substitute R for C in the right side ofEq.

❖ Then, we have

C/W = logil +(EiN
0
)(C/W)),

•!• Arranging it for EiN
0

, we have 

EiN
0 

= (W/C)(2C/W - 1) 

❖ Let x:=(C/W) ➔ 0
❖ P IN = lim (1 /vV')x _ 11 = 1.-,o- ') = n r;;o� = _ J r:. ,n:1 

... 
_._,b, .... ., o 

..................... x---+O\_!._f.C!LJ\--- --1-J ..1.'-'E,e..:;.., v.V../-J ··;_ .. \./ \..li-li. .. .l 

❖ 'l'his is the ultimate limit belovv which no error-free
transmission is possible no matter hmv small R/\V we may
choose

©2004 Heung-no Lee 23 

Shannon Limit (3) 
-1.59 dB

C/W 
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BPSK over A WGN 

Y = X+N 

- X = 1 or-1

- N ~ Gaussian (0, Nj(2E
b
))

I(X; Y) = E{logP(YIX)/P(Y)} 

©200x Heung-No Lee 25 

Capacity Lower Bounds on P
b 

as a function of E
i
N

0

Moon, p.52 

��itlli•tMt)apacity lower bounds on Pt, as a function of SNR. 26 



Table 1.1: Historical Milestones 
owl948: Shatm,m publishes "A Maaieffiatical. Th'-'"Of'}' of 

Communkati.on'· (309 j 
1950 Hamming describe.a Hartillling ctl<le,; {1S7J 
19:54 R.t-..e.d 1.284] and Mullet 1248] 00th pre1,,<,'ltt Reed-

Muller .code;, and thc-ir -decoders 
1955 Elias irttftXIU(es cru1voluti(mal codes [76J 
1957 Prange intnxi11cM cyclic codes [271] 
1959 A. !-hx:,qucnghem{1511 MU ... 
1%0 Booe and Ray•O•audhuci 136] di:scrlbe BCH codes 

Recd&Solom.{m pr:odw.:� cponymm.ls code-s {2861 
P:ctcnon provides a solurion to BCH do.:::(..:iing: r261] 

196 l .Pct-trson produces hi'I huvk f260J, latcr-�tcndec,d ,md 
revised by Peterson and Weldon [262} 

1962 G:dlager intt()tlm;,es LPPC codes [1121 
:!400 Brs m"'ldem eom..1n('t'da:Uy availttble (4-r'SK) 
(seet}OOD 

1963 The };.ano algorHhm for decodin;g convolutionai 
cod.e.s hlttOOt1ced 1'8.(}J 
Mw:1.ocy unities. the study ofmajudty logic decoding 
(124J 

1966 Fom1ty produces an in.depth study of eo,ncat1.,•:rutcd 
codes [87] -and inttol.h.u:ei.. generari.l>.ld mio.Ulrnm dis­
tance decoding fB-&J 

1'}61 Jkdclutmp introduC{!:S a faM a(gorithrn for 
BCH/Recd-Sofomon dec:oding (22j 
Rudolph irutiates the itudy (If fo1:ite geom..mies for 
Ndingf.29-9} 
4800- BPS tmxlem 4;::nmmcrcial1y .tv.:1ilable (8-PSK) 
(soe[IOOJ) 

l96ij Dedek.amp pitJduce-s Algi'bruic Coding Theory {:l:'i] 
(Kl!lf>o1>r nr,-..lu..-,.� r .. r,,,,,.,..,,.,;"'., ,1,��")' -•--' -UJ.J..1,. 

auwmmi.r:ati{m [J 11·; 
1969 JeHnek ck:�cribe."> the Sfack algorithm for tk-'Ctiding 

fiHwolution.il codes {165] 
Massey inrro-ctuces hls. a:1¥:orhhm for UCH de,;;oding 
r2221 
Reed�Mullel" ,;.ode fii-e.s on Mariner d("Cp !l-p�e 
prom'.s using Greeu machine decoder 

197 l Viterbi intttJduce� me a:lgarit:hm for-ML decrniing of 
convolutfonal codei. {359] 
96-00 BPS mod�n'J. �uftltnQrd.aHy av,�ifabl-e (16, 
QAM) (sec [!00]) 

1972©2;u., BR. ! R algoriJhm .i,s de..">cribed in the 01)\tU Jit¢j;:t­
c \1W\1'i:lfung-No Lee 

191:1, fomcy du,;;ida.tes.the Vhetbi al_gm-ithm [89J 

Read Chapter 1 

Review the following items 

Year Milestone 
1975 Suti)�na."etal. propose the W!� of are El.K"lidean 

algorillun for <kC<>dmg !324) 
1977 MacWUliams .md SJoanc pro<luc-ot the eii-cyclupedk 

The Theory of Erm-r Carrocting Cn.:ks [22.0] 
Voyager deep -.:pace missiun use!! a concatenated 
RS/convoluifonal -c-o<le (sec 1231]) 

1978 Wolf bttrodoc-es a trems description of blod:: codes 
[377) 

1980 14,400 BPS modem cummercial.ly available (64-
QA!.1) (see 1100]) 
,�any .and Phillips i;tanda:nlii;e the comp-act disc, in­
cluding a $hottenW R�i-Sokim<m c1.xle 

198 l Gopp-a lt1t:toduc-os algehra.ic-uemndty ;;ode� fl 23. 
1:14] 

l 98:2 Ungerboeck de!K'.riOOs trctlis--codt:"".d m-odtdntion 
[J,15) 

1983 Lin & C-.'S-tello produce -tht:.ir -cngineerini textbook 
12031 
BJahut pubf.ishe;; 00 rexthook {33J 

1984 14,400 BPS l'CM fll{1dcm ;;omnmn:iaUy a-vailabk 
(l2$-TCM)(,e, t!OOI) 

1985 19,200 BPS TCM .tn{)dem comruerci::dly :i.va.ilable 
(160-TCM) (see [!00]) 

1993 BC"troU. Ofa.vieux, aud Thithoajshinua announcc­
turb(J code;9; [28 l 

1994 The � limanty of .fumi!ies Qf nonlinear code,:; \s 
announced [ 1381 

1995 Ma:c-K�yre. .. usdt.ate.s t.DPC c�s [218} 
Wicker puhlishi:� hi.s tc-xtbook [3731 . 

11196 33,6-(JO BPS modem {V.34) m�m is Cf>tnn1en.,--iaUy 
<1.M,U;1,u,i'I, �::.,;:i;c j�O)} 

1998 Alamouti dest!riboo a spat'C·timc code t"3J 
1999 Gurun'-'<mli and Sudan p-re!i-en1 a list decoder for RS 

and AG c-ode-s I128J 
2000 Aji and Mc:Eliece f2] (and oth-w;. [19.51) r:,ynthe-si:te 

sevc,i-al Jec-oding aJ,g•>rith:m$ a.�hi.g rtW$�4gC _fll,$:t�ing 
ldcacS 

2002 H:m.w, Liew, andYc-apcharacli:riwr.u.rboaJg-orithms 
iJlfl4J} 

2003 Koe:tter and Vardy extend tht OS aJgmithm for ::;:oH� 
deci.siou decAding -of RS c<�es. [191 j 

2004 Lin&Cr�teUo '>econ<l wition (2041 
2005 M()OU ptodt,�e-'> what i� h.(,ped to be a valuable book! 

Entropy, Conditional Entropy, Mutual Information 
Source Encoder/Decoder 
Channel Encoder/Decoder 
BPSK and its probability of error 
Gaussian Channel 
ML vs. MAP~ which one is better? 
Union Bounds 
Binary Symmetric Channel 
Hamming Distance 
What is a code? 
Minimum Distance of a Code 
Coding Gain? 
Channel Coding Theorem and its Proof 
Capacity of A WGN 
Difference between Et, and E, 

Reproduce Figure 1.24 using MATLAB. 

©200x Heung-No Lee
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Galois Fields 

Evariste Galois [evaifist galwa] (1811 - 1832): 
Died from a wound obtained in a duel over a lover. 

References: Ch.2, Ch.3Wicker 1995, Ch. 2 of Moon, Wikipedia 

©2010 Heung-No Lee 
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Why study Galois Fields? 

In the first class, we reviewed the channel capacity. 

·❖ The capacity of a channel can be approached via a channel code.

The lesson we learned from the channel coding theorem is that we 

should use vectors, rather than single symbols to communicate over a 

noisy channel. 

What is a channel code then? 

- A channel code is a mapping from a vector space of messages to a bigger 
rlimPn.::.inni1I "Prtnr cpi1"P nT r-n.rlPurru--rlc. 

• Bigger dimension to accommodate redundancy information 

©20 IO Heung-No Lee 

Why study Galois Fields? 

Algebraic codes developed early in 50s and 60s are mapping 

from a vector space of dimension m, 

over a finite field GF(q"'), 

into a vector space of dimension n>m. 

A code is a subset of vectors oflength n. 

- Larger distances are obtained between codewords.

Reed-Solomon codes 

n = qm -I

- Over GF(q"')

For at-error correcting code, t*m bits can be corrected.

©2010 Heung-No Lee 
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Algebra 

❖ The word "algebra" comes from Arabic language.

- It means "restoration."

❖ In mathematics, it means a branch of mathematics that

deals with addition, subtraction, multiplication and

division.

©2010 Heung-No Lee 

Different Representations of GF Elements 

❖ An element in GF can be represented as vectors or as

polynomials.

❖ Ex) Polynomials of degree less than 2 over GF(2)

x2 +l, x+l,

- Sum of the two polynomials = x2 + x

•!• Factorization of polynomials 

❖ Codewords = polynomials = vectors = curves over GF

©2010 Heung-No Lee 
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Original Question asked in GF Study 

"Why is there no fonnula for the roots of a fifth or higher degree polynomial 

equation in terms of the coefficients of the polynomial, using only the usual 

algebraic operations (addition, subtraction, multiplication, division) and 

application of radicals (square roots, cube roots, etc)?" [Wikipedia] 

Galois theory answers this question, as well as others, i.e., 

- Why we can do that for degree less than four?

Ex) Roots ofx2 -4x + I = 0. 

- a = 2 + sqrt(3), b = 2- sqrt(3). 

- a+b = 4 and ab= !.

Ex2) Roots ofx2 + x + 1 = 0. 

©2004 Heung-no Lee 

Now, let's begin 

©2010, Heung-No Lee 
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Loose Definitions, for now 

•❖ (Abelian) Group is a set of objects that can be "added."

Field is a set of objects that can be "added," and 
"multiplied." 

❖ Vector space is a set of n-tuples, defined over a field, in
which the vector addition and the scalar multiplication are
well defined.

©2004, Heung-no Lee 

Set 

,❖ Collection of objects, or elements 

❖• Cardinality, the number of objects

❖ Consider a binary operation on two set elements which
yields a third element.

©2004, Heung-no Lee 
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Group G

A set of objects on which a binary operation+ 
satisfies the following 4 axioms: 
- Closure: a, b E G ⇒ a + b E G 

- Associativity: (a+ b) + c = a+ (b + c)

- Identity: for all a E G, 3 an identity element such that
a+ e = e +a = a. 

- Inverse: for all a E G, 3 an (unique) element a- 1 E G
such that a+ a- 1 = a- 1 + a = e.

The cardinality of a group is called the order of the group. 

Finite group, we call, when the order< oo. 

©2004, Heung-no Lee 

Associativity 

Addition and multiplication are associative. 

- Ex)

Subtraction and division are not associative. 

- Ex)

10 
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Abellian Group 

❖ A group is said to be commutative (or Abellian) if it also
satisfies
- Commutativity: for all a, b E G, a+ b = b + a.

- Most groups considered in this class will be commutative.

- cf) The group of invertible matrix is non Abellian, i.e.

(
0 1

)(
1 0

) (
0 -1

) -1 0 0 -1 = -1 0

©2004, Heung-no Lee 

Examples of Groups 

The set of integ� under integer addition (but not under 
� ). 

❖ The positiver�tional numbers, under ordinary
multiplication.

12 
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Equivalent Classes 

Two integers a and b are in the same equivalent-class 
modulo-m if a = x m + b for some integer x. 

Example 
- Addition modulo m = 3 gives three distinctive equivalent classes

(labeled with the smallest non-negative integers)

• 0 +-+ { ... , -3, 0, 3, 6, ... }

• I B { ... , -2, I, 4, 7, ... }

• 2 B { ... , -J, 2, 5, 8, ... }

"Equivalent" in the sense that 
0 + 2 =2 mod 3 

3 + 2 =2 mod3 

0 can be substituted with 3 in operations w/out changing the 
outcome of the operation. 

©2004, Heung-no Lee Fall-02, University of Pittsburgh 

The Order of a Group Element 

Let g E G with a group operation *. 

ord(g) is defined to be the smallest integer t such that 

nt · - 11 ::k n ::k • • • * n == P 

CJ • - � � 

Examples 

- Group of order 2 under modulo 3 multiplication { 1, 2}.

- The order of element 1 is, ord(l) = 1.

- The order of element 2 is, ord(2) = 2.

©2004, Heung-no Lee 
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Subgroup Sofa group G 

•❖ When a subset S of a group G forms itself a group, it is
called a subgroup of G.

Closure: If any a, b E S, then a * b E S. 

Inverse: If any a ES, then there exists a· 1 ES. 

Sis a subgroup ofG, if the closure and inverse conditions are met. 

We say proper if S c G, but not S = G. 

Example: 
- The group of integers under modulo 9 addition contains the proper

subgroups {O}, {0,3,6}.

❖ A simple way to construct a subgroup S of a group G
Take any element g E G. 

- A subgroup S generated by g is {g, g2, g3, ... , g"rd(gl}.

©2004, Heung-no Lee 

Coset Decomposition of G 

❖ Given a group G and a subgroup S = {s
1
, s

2
, ... , s

n
} 
�

Coset Leaders 

Choose 
any element 
inG 
which 
has not 
appeared in 
above rows 

q x n = the order of G 
Every element ofG appears once and only once in a coset decomposition. 

©2004 Heung-No Lee 
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Lagrange's Theorem 

If Sis a subgroup of G, the ord(S) devides the ord( G) 
without remainder. 
- notation: ord(S) I ord(G) = ord(G) mod ord(S) = 0 

©2002 Heung-No Lee 

Coset Decomposition Example 

❖ G = {O, 1, 2, ... , 8} is an Abellian group under modulo 9
addition.

❖ S = {O, 3, 6} is a subgroup.

18 

❖ The coset leaders are 0, 1, 2.

❖ Cosets are {O, 3, 6}, {1, 4, 7}, and {2, 5, 8}.

��%,,� 
� Y:,1c4\. ; {\ ( 

©2004, Heung-no Lee 
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RingR 

A ring R is a collection of elements with additive+ and 

multiplicative * operations with the four properties

Ris a commutative group under+.
Closure under*: For any a, b ER, the product a* b ER.
Associative* operation: (a* b) * c =a* (b * c).
* distributes over+: a* (b + c) = a*b + a*c.

A ring is commutative if * commutes.

- a* b = b * c.
❖ Aring with identity � h'•u(.l _I

- * has an identity element (labeled as "l ").

©2004 Heung-No Lee 

Examples of Ring 

❖ The set of integers does not form a field since most integers do not
have multiplicative inverse (3 x 1/3 = 1, but 1/3 is not an integer).

The integers under mod-m multi and addition form a commutative ring
with identity.

The set of all polynomials with binary coefficients form a commutative
ring with identity under standard mod-2 polynomial addition and
multiplication.

©2010 Heung-No Lee 21 



FieldF 

❖ A set of elements Fon which+ and * are defined is afield

iff
- F is a communicative group under the additive operator + (The

additive identity element is labeled as "O").

- F- {O} is a commutative group under* (The multiplicative
identity element is labeled as "l ").

The distributive law holds: a*(b + c) = a*b + a*c.

❖ It is a commutative ring with identity in which every non­

zero element has a multiplicative inverse.

©2004, Heung-no Lee 

Examples of Fields 

❖ Infinite Fields

- The real numbers

- The complex numbers

- The set of rational numbers.

©2004, Heung-no Lee 
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Galois Fields GF(q) 

•❖ A field of q-elements, when exists, is unique (There is only

one.), and denoted as the GF(q), q is finite. 

- Discovered by Evariste Galois.

The integers { 0, 1, 2, ... , q-1}, where q is prime, is the 

GF(q) under modulo-q addition and multiplication. 

·❖ This field can be sufficiently represented by the addition

and multiplicative tables. 

©2004, Heung-no Lee 

Examples of GF(q) 

GF(2) 

GF(3) 

F1 

1 1 0 

+ 0 I 2

0 0 I 2 

I 2 0 

2 2 0 I 

©2004, Heung-no Lee 

0 

2 

F0 

1 0 1 

* 0 I 2

0 0 0 

0 I 2 

0 2 I 

24 

25 



GF(4) = {O, 1, 2, 3} 

Note that 4 is not a prime, but is a certain power of a prime, 
22=4. 

Note that here + and * are not modulo operations: 

+ 0 I 2 3 * 0 I 2 3 

0 0 I 2 3 0 0 0 0 0 

l I O 3 2 I 0 I 2 3 

2 2 3 0 I 2 0 2 3 I 

3 3 2 I 0 3 0 3 I 2 

GF(qm), where q is a prime and m > I, can be constructed 
with more complex operations than simple modulo 
arithmetic. 

©2004, Heung-no Lee 

Vector Spaces 

Vis a set of vectors. 

Fis a field of elements called scalars. 

Binary vector addition+. 
- For v 1 , v2 E V, v 1 + v2 = v E V

Binary scalar multiplication *
- For v

1
EVandaEF,a*v

1
= vEV

Vis called a vector space over F if the followings hold:
1. Vis a group under the vector addition+.

2. For any a E F and v EV, a * v = u EV.

3. a*(v1 + v2) = a*v 1+ a*v2 and (a+b)*v = a*v + b*v.

4. Associativity: (a*b)*V = a*(b*V). 

5. 1 *v = v, 1 is also the scalar multiplication identity.

©2004, Heung-no Lee Fall-02, University of Pittsburgh 
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n-tuple vector space Vn

Example: V
3 
over GF(2) 

- (0, 0, 0), (0, 0, 1), ...

❖ The linear combinations of a spanning set G include all
vectors in G.
A spanning set G which has minimal cardinality is a basis
for a V.

The Inner product operator ·
•❖ Dual spaces of a vector space

- SJ. is the dual space of S ifJ for all v
1 

E SJ. and for all v
2 

ES,
V1 · Vz = 0.

©2004, Heung-no Lee 

Theorem 1: Order of an element divides q-1. 

For GF(q), "order" is defined for multiplication. 
❖,fet � E GF*(q) = {l, 2, ... , q-1}.

' - Ord(P) is the smallest integer t > 0 such that W = 1.

ll,ivides q-1 without remainder (Theorem 1 ). 

28 

,·4-� 

:...'. Note that {P, p2
, p3 

, ... , P,=1} fqrms a subgroup of GF'(q) under 
multiplication. I 

- As a subgroup, its size must divide the size of the original group
(Lagrange's Theorem).

- This determines the range of possible orders.

• �xample: { l, 3,
.·

5, 15} is the
. 
range of or��J.Q�

. . . . 
ement 

m GF(l6). f· _____ .� I'., l:c- /. \ __ //.- r � �n-. vf(� ��. c;( 
©2004, Heung-no Lee 29 



Greatest Common Divisor: GCD( a, b) 

The set of integers forms a ring under usual mult and add. 

❖ Division Algorithm: For any pair of integers a� b-::/:- 0,

there is a unique pair of integers Q (the quotient) and r (the

remainder) such that

-- a = Q b ' r, where O s; r < lbl 
- Cf. a = r mod b (a is congruent tor modulo b.)

- bla when r = 0 (b divides aw/out remainder; bis a factor of a)

For a, b E Z, GCD(a, b) := the largest divisor m of a and b, 

i.e., mla and mlb.

©2004, Heung-no Lee 

Euclidean Algorithm 

Theorem 2: r
n 

is the GCD(a, b). 

Iterative algorithm to find the GCD(a, b), for a:::: b > 0 
Lemma-I : Any common factor c of a and b is a factor of r.

- We can write a=cx and b=cy for x, y > 0.
- r = c(x -yQ) from ex = cyQ + r
- Note that (x - yQ) is non negative integer.

Lemma-2: Any common factor d of band r is a factor of a.

- We can write b=dx and r=,then a = dxQ +dz = d (xQ+z).

Algorithm: cJ,,1:; 
- a = b Q 1 + r1 

(O:S; r
1 
< b) 

- b = r1 Qz + r2 

- r1 = r2 Q2 + r3 

- rn-2 = rn-1 Qn + rt/ 

- rn-1 = rn Q,i+l 
©2010 Heung-No Lee 

(Os r2< r1) 

(Os r3
< r2) 

(Os r11
< r,,_ 1) 

(stop when zero remainder) 
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Corollary 

For any a, b E Z, :l x, y E Z such that 

GCD(a, b) =ax+ by 

� � 'tr Q 7- -t �7_ 
©20 lO Heung-no Lee 

-;c 3(( �-f(!w-@�\ 

a :, �( �)-f-((�0 
L __ -r;------:�----:--�,=-- -:T-��77'";'\�q---;;==7474-72-0 

b CL 
GCD(66, 180) = 

GCDExample 

2 z 

,:; 
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Theorem 3 
If ord(a)= t, then ord(a/) = t /GCD(t, i). 

" 

".L 

Let a and ai be elements ofGF(q). If ord(a)= t, then ord(a/) 
= t /GCD(t, i).

Proof: Show x divides and is divisible by t /GCD(t, i) 
_ Consider ( ai)I /GCD(I, i) = ( a')i /GCD(1, i) =( 1 )i /GCD(1, i) = l.
- Thus, x I t /GCD(t, i).

- Now note ( ary = aix = 1 since xis the order of ai by definition.
- This implies t I ix , which implies t/GCD(t, i) I x.

• Note qi+rt=GCD(i, t) for integers q and rand tu=ix for integer u.

• Multiply both side by x, then xqi+xrt=xGCD(i, t) .

• Replace ix with tu on the left and have (uq+xr)t = xGCD(i, t) .

• Divide both side by GCD(i,t), which shows t/GCD(t, I) I x .

©20 IO Heung-no Lee 

The Euler Totient Function ¢(t) 

¢(t) := j{t::;; i < tjGCD(i,t) = t}I 
=tJl(t-}) 

where p E { 0 < p < t : p is prime and p I t} 

❖ Totative oft is a positive integer less than t that is
relatively prime to t.

❖ Totient = # oftotatives

©2010, Heung-No Lee 
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¢(1): = 1 
¢(2) = 1 

❖ ¢(3) = 2 
¢(4) = 2 
¢(5) = 4 
¢(6) = 2 

❖ ¢(7)=6
❖ ¢(8) = 4 

¢(9) = 6, 
¢(10) = 4, ... , etc. 

©20 IO, Heung-No Lee 

Examples 

{1} 
{ 1, 2} 
{1, , 3} 
{1,2,3,4} 
{1, 4, 5} 
{1, 2, 3, 4, 5, 6} 
{1, 2, 3, 5, >, 7} 

Euler Totient Function (Cont'd) 

Properties 
( l ¢(p) = p - l, when p is prime.

- ¢(p 1 . P2) = ¢(p 1). ¢(p2) = (p l - 1) (P2 -1),
when p

1 
and p

2 
are distinct primes.

¢(pm)= pm-l (p-1), for prime p.

¢(p1
m p

2
m) = p

1
m-l p2

m-l (p 1 - 1) (p2 -1), for distinct
primes p

1 
and p

2
. 

©2010, Heung-No Lee 
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Multiplicative Structure of GFs 

(Theorem 4) 

In GF(q), t I q-1 means there are cp(t) elements of order t.

L' �:/. ' .J�r-" Proof: ,..v-J--•S ' 

W� _l ❖ Supp�se t = ord(a), � E GF(q), then {a! a2
, • • • , at} -rrt;if 'J?J--_/ � o.

� �nf.s contains all the solutions to x1 
- 1 = 0. -t_µ.J,. i5 ff.- Yi 

-¼, • Then, al I the elements of order t are in { a, a2
, • • • , at}. 

f3r,,t- 1 
J ❖ We know ord(,8) = t/GCD(i, t) for�= ai . (Thm 3) a •k. 

e� 0& t , o<J···; J - Ord(ci') = t, �CD(i, t) = l. ,,,_ 1.1 �lftt.lr-
1'> "'- ol- · By definition';"the�, there ar;�(t) s�ch e

1

l��ents in { a, a2
, 

£../4 ;- J,shrttk _/ ... , at}.

l 
t 2 ;�

"1-\0\' I ,_.2., 3, · - . ; .5
©20 IO Hew1g-No Lee 38 

� 

In every GF( q), there exists a primitive element. 

An element with order q-1 in GF(q) is called primitive.

In every GF(q), there are ¢(q-1) primitive elements. 
- Corollary to Theorem 4.
- Every GF(q) has at least one primitive element (cp(t)?: 1)
- If a E GF(q) is a primitive element, then

1, a, a2
, a3, ... , <.t'l·1=1, o'i, cl'.'i"'' •...

q-1 distinct

non-zero

elements in GF( q)

©2010 Heung-No Lee 

Repeating 
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• S' < t1 

• '=I_ 6Me � •- � -s-e..+ L cl., d._ ) • � �--> o( J � 
� Example 

'❖ GF(7) = {O, 1, 2, 3, 4, 5, 6} 
- GF*(7) = {l, 2, ... , 6}
- Possible orders t I (q-1) = {l, 2, 3, 6}.
- # of elements of order t
- Order t: 1, 2, 3, 6
- c,b(t) = 1, 1, 2, 2
- Primitive elements are 3 and 5

i 3; Ord(3;) =
6/GCD(i,6) 

• Ex) 1, 3, 32=2 mod 7, 33 = 6, 35 = 5, 36 = 1. 0 I I 

I 3 6 

2 2 3 

3 6 2 
4 4 3 

5 5 6 

©20 IO. Heung-No Lee 40 

� �tt'v,k� 
r� r's =)e,,v-o . 

Additive Structure of GFs 

"1" i\the multiplicative identity. 
Now consider 

� ?-1-1) e{'--",vv� 

15 r�h'!,' 

� �(� 
0, 1, 1 + 1, 1+ 1+ 1 1 + 1 + 1+ 1 . . 

, , , 1._' .L--
' ' .  •• '-J.,(_., STtVlC.� 

2(1), 3(1), 4(1), .. . �!b O:piipi\ kof•4-!-

J"'4--��o�Y-���d�.S�.
The sequence must repeat (finite field). 
The first one to repeat is zero. 

? ��one to repeat.

S��l) = k(l) for �ome O � k <j. 
. en, k must be zero,

:: 
G-k)(l)=O 1s an earlier repe�anj.

©2010. Heung-No Lee ( o ,,(�U(_ <p � a � (\ rvQ 
) 41 " 
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Theorem 5 

The characteristicp of a GF(q) is the smallest integer, i.e., 
p(I)=O. 

'?
'jf

fO 'f

f f I\ f\ 
Q ❖ Theorem 5: The characteristic p a must be a 

integer. 
Jf f t. ho.,:�-u-:i.. "Jl--

7> 
�,5 �(f).Jef ;4-f,"c, of G,f(°f') f /? fd'� •

h.,J f 'fa,·,... r<;,.i. / I 
Sll>M P, ,f• ❖ Z

P 
= {O, 1, 2, ... ,p-1},p prime, is the GF(p) under mod-p

t"'"-13fd, � f ,< 1 j f, r 1 t r,rnl t./ add.

' 
f .i�; f ,,ti) ,.

0

_ :zz.i " / o , i , :w.), get), -- - > ct_, ).1.j
('I J, � .j- ©2004. Heung-no Lee 42 
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Theorem 6 

�;¥' 
The order q a GF(q} must a power of a prime. 

©2010 Heung-No Lee 43 



Polynomials over GF(q): GF(q)[x] 

ao + al x
l + a2 x

2 + ... + an x
n 

❖ a i E GF(q).

Irreducible Polynomials in GF( q) 

_r.. {a_i t 6{) �
f 

(, .. 0 

❖ Definition: A polynomial.f{x) is irreducible in GF(q) if .f{x)
cannot be factored into a product of lower-degree
polynomials in GF(q)[x].

An irreducible polynomial.f{x) has no roots in GF(q). 
Examples: ,, 

1--+ I

('X2 H )�C-:t.-f i)(?:-t 1) �Gf/2-)f-x:J
['J� ') -ev l'<Yt_citA.f_./k,,k_ f)-4-vt. &(F(,J 6 J

rf-. t,L+'X + ) 

©2010 Heung-No Lee 
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Primitive Polynomials 

❖ Definition: An irreducible polynomial j(x) E GF(q)[x] of
degre(m)s called primitive if the smallest positive integer
n for ��hj(x) I (xn - 1) is n = �1-1. _ ,_£. A f_ +--. -- £r,wi..�-ri.,v,.e ex�; 
- j(x) has no roots m GF(q) == �

- j(x) has m roots in GF(qm) which are primitive elements in GF(q111
). 

Theorem 7 

❖ The roots { aj} of an m-th degree primitive polynomial p(x)

E GF(p)[x] have order pm -1.

'Z((- f %
>.. 

4- 0 I 

)?(�1"···•·•-
ry,_1 + x_!i" -1-- ,z_ fa 

©2010 Heung-No Lee 47 



Construction of GF(8) 

❖ p(x) = x3 + x + 1 is primitive in GF(2)[x].

❖ Let a be a root of p(x), i.e., a3+a+ 1 = 0 or equivalently a3

=a +l.

❖ Addition 
a4 + as 
= (a2 +a)+(a2 +a+l) 
= 1 

❖ Multiplication 
a4 x as = a4+5mod7=a2 

or 
= (a2 +a) (a2 +a+l) 
= a4 +a mod a3 +a+ I =a2 

©2010 Heung-No Lee 

Exponential 

Representation 

a" 

(Xl 

a• 

aa

a4 

a5 

a 6 

0 

Polynomial 

Representation 

1 

a 

a2

a + 1 

a2 + a 

a2 + a +1 

a2 + 1 

0 

Construction of GF(4) 

p(x) =x2 + x + 1 is primitive in GF(2)[x]. 

Vector Space 

(1, 0 ,0) 

(0, 1, 0) 

(0, 0, 1) 

(1, 1, 0) 

(0, 1, 1) 

(1, 1, 1) 

(1, 0 ,1) 

(0, 0, 0) 

❖ Leta be a root of p(x), i.e., a2+a+l = 0 or a2 =a + 1.

Exponential Polynomial Vector Space Label + 0 I 2 3 
Representati Representat 

on ion 0 0 I 2 3 
a" I (I, 0) I 1 I 0 3 2 
a' a (0, !) 2 2 2 3 0 I 

a• a + l (!, I) 3 3 3 2 2 0 
0 0 (0, 0) 0 

X 0 I 2 3 

0 0 0 0 0 
1 0 I 2 3 

2 0 2 3 I 

3 0 3 I 2 
©2010 Heung-No Lee 
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Summary 

❖ Every Galois field has at least one primitive element.

The size of GF(q) is a power of a prime.

) The smallest subfield of GF(pm) is GF(p ), where p is a 

prime and called the characteristic of GF(pm). 

❖ Primitive polynomial p(x) of degree m E GF(p)[x] has no

roots in GF(p) but has m-roots E GF(pm).

The roots of primitive polynomials p(x) are the primitive

elements in GF(pm).

©2004. Heung-no Lee 

HW#l 
(Due Wednesday. 9/ I 5) 

P2.l, P2.4, P2.5, P2.18, P2.19, P2.20, P2.22, P2.25 

©2010, Heung-No Lee 

50 

51 



near clic Codes 

©201x Heung-No Lee 

❖ (n, k) block codes

References: Moon Ch.3, Ch. 4, 

Wicker Ch. 4, Ch.5, 

Agenda 

❖ (n, k) linear codes

❖ (n, k) cyclic linear codes

©201xHeung-No Lee 2 



Coded System 

r = c+e 
m' m C 

I Decoder Encoder Channel 
Message Codeword r

Received Decoded 

vector word word 

Error word e 

m, c, rand m' are vectors: From Shannon's work, we know block 
processing of information over noisy channel helps, rather than 
processing them in a bit-by-bit manner. 

As the size of the block increases, the larger is the potential to 
achieving the capacity; but the greater is the difficulty in decoding. 

©20lx Heung-No Lee 

Kinds of Errors 

Soft errors 
- A WGN channel

Hard errors 
- Quantizations

Erasures 
- Loss of symbols, packets

©20lx Heung-No Lee 
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(n, k) Linear Block Codes

❖ The block length n.

❖ The message length k.

❖ The code is q-ary when each coordiante takes a value from

GF(q).

❖ Rate of the code R = log
q
(M)/n, and k=nR.

❖ Redundancy r = n - log
q
(M)

� 

©20lx Heung-No Lee 

(n, k) Linear Block Code

❖ A code C spans a vector space with dimension k. It is a collection of M

codewords.

❖ Linearity: For any a, b E GF(q) and any v, u EC, av EC and av+bu =

CE C.

- If c is a codeword, Oc = 0 is a codeword.

- Let d(v, u) denote Hamming distance between any two different
codewords v, u E C and w(v) Hamming weight of codeword v

respectively.

- Then, <luim = min d(v, u)

= min w(v + u) 

= min w(c=v + u) 
= min w(c), over all non-zero c EC 

- It is the minimum weight of non-zero codeword.

©20lxHeung-No Lee 
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A code = a generator matrix = a parity check matrix 

A linear block code can be defined by either a generator 

matrix or a parity-check matrix. 

,❖ Generator matrix is obtained by k linearly independent 
codewords. 
-The rows of G, generator matrix [ nR x n] of a code, span the code space

The rows ofH, parity check matrix [n(l-R) x n], span the 
linear space perpendicular to the row space of G. 
- There are n(l-1?.) number of simultaneous linear homogeneous parity check

equations.

-There are n(l-R) rows ofH which span the null space of the code.

GHT = 0 

©201x Heung-No Lee 

Distance Spectrum 

Hamming weight of a codeword is the number of non-zero 

coordinates. 

A
h 

is the number of codewords with weight h, h=O, 1, 2, ... , 
n, in a code C.

Distance spectrum {Ah
, h=O, 1, 2, ... , n} is a collection of 

A
h .

Polynomial representation is useful. 
n 

A(z) = LA
h
zh 

h=O 

n 

A(z)l z=I = LAh = 2k 

h=O 

©201x Heung-No Lee 
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Mac Williams Identity 

Moon,pg.95 
Theorem 3.6 (The Mac Williams Identity). Let C be an (n, k) linear block code over F q 
with weight enumerator A(z) and let B(z) be the weight enumeratorofC1- . Then 

B(z) = q-k(l + (q - l)z)" A (i /(; � l)z),
(3.12) 

or, turning this around algebraically, 

(3.13) 

©201x Heung-No Lee 

Max. Likelihood Decoding 

Code 

0 
0 

Decoding 

Sphere 

•o
• 0 0

0 
o o o o

o
• 

0 e O 0 

0 
0 

❖ Encoding: m➔ c, it is a mapping from a block of message bits to a
codeword.

❖ ML Decodin · e decision in favor of a message index m that 
maximizes r{Y!m}

7 
rD.. ( Y'J 141 l

- This I a mitiimJni dista cede'coding rule. 
- Minimum distance errors dominate the error performance.

©20lxHeung-No Lee 
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Decoders 

Complete decoders 

c = min d(r,c) 
CEC 

t-error correcting bounded-distance decoders

C = 

c: d(r,c )5'I 
A { min d(r, c) 

failure, if not a single c is found 

Erasure decoding 

- Error location is known

©201x Heung-No Lee 

Minimum Distance Decoding and Correctable Errors 

weight one 

codeword} 

codeword i 

Note dmin = 4. Thus, it can detect all error patterns up to 

weight 3. 

MLD = minimum distance decoding. 

The blue ball is a decoding failure because it has the same 

distance with codeword i and codeword j. 

A code with dmin can correct all error patterns of weight 

<= floor((dmin- 1)/2) 

©20lx Heung-No Lee 
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©20lx Heung-No Lee 
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i e 1 � etr-
t t·,�) CC; 

13 

.,<.,as� 
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Upper Bound on Redundancy r \ ( /�
.,,,,-- ,

(Gilbert Bound) \ \'<..��; 1 
There exists a I-error correcting code oflef\gth �.=-_.::__,- .-
satisfying r <= log

q
Vq(n, 2t).

Consider the pool of n-tuple vectors. There are qn such vectors. 
Choose one vector as a codeword, and eliminate all neighboring r j ' 
vectors in the Hamming sphere Vq(n, 2t) from future selection. � �-.��-
Proceed until no selection can be made. \ V:, l' ; 
This insures the code's capability of correcting terrors. :1,;) 
ceil(qn I Vq(n, 2t)) is the no. of codewords since overlapping is (q,. 4( _
allowed. \ i 
M= ceil(qn I Vq(n, 2t)) >= qn I Vq(n, 2t). :? �'J 
Redundancy r := n - log

q
M :S n - (n - log

q 
Vq(n, 2t)) . 

�· ¼i,-�(r; ) 
©20lx Heung-No Lee 
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Error Correction and Detection Capability of a Code 

A code can correct up to all t-error patterns if 

f < l 
dmi; -1

J 
A code can detect up to all dmin - l error patterns. 

A code can correct up to e
1
-error patterns and detect all e

2
-

error patterns if 

el + e2 < dmin - I 
and 

©201xHeung-No Lee 15 

Simultaneous Correction & D.etection 
C�Jf , '\ 

,"llr" ·\._.) l..,.,, ' 

\ \ E.:-v·r�, 
Example with d . = 7 · .. · -i' c,-e· 

(S' 
mm ., 

Correct O brror and detect 6
#

error~s 
Correct 1 error and detect 5 errors 
Correct 2 errors and detect 4 errors 
Correct 3 errors and detect 3 errors 

.� ·-

Recover up to dmin - l erasures. 

©201xHeung-No Lee 
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�--r 

1""' 1 �e t I
�-

+�z -:;;) �:; .. 1,.
-.,...;;:;; 
Erasures and Errors 

o (\ 4 i0:::.o f.::: 3 ,:::) e ',II> ) 1 .: ) '-

� -=-· 

A code with d
min 

can recover f erasures and e-errors if 

2e + f < dmin -

- With/ erasures, the remaining code still has minimum distance of 
dmin -f 

,_,__._.,·v·

©20lxHeung-No Lee 

Some Block Code Bounds 

❖ How many vectors in n-dimensional space can be chosen
as a codeword of a code with d

min
?

❖· What is the minimum redundancy required for a t-error
correcting q-ary code of length n?

Only some bounds are available for these questions. 

©20lxHeung-No Lee 
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Hamming Sphere 

❖ Consider, received = codeword + error.
❖ A Hamming sphere of radius t is a set of all possible received words

that are t distance away from the codeword.
❖ Weight of the error<= t

❖ How many error patterns ( or the received words) are there in the
sphere (for (n, k) code over GF(q))

No. of weight-one errors: n choose l x (q-1) 

- No. of weight-two errors: n choose 2 x (q-l)(q-1)

- No. of weight-three errors: n choose 3 x (q-l)(q-l)(q-1)

Vq(n,t) = �}=o (1})(q- l)j

❖ This is the number of error patterns a t-error correcting code can··
correct where t = floor(( �i0- l )/2).

©20lxHeung-No Lee 

Lower Bound on Redundancy r 
(Hamming Bound) 

❖ A t-error correcting q-ary code of length n must have

redundancy r >= Iog
q

Vq(n, t).
- A t-error correcting q-ary code of length n requires a Hamming

sphere of size Vq(n, t)
How many such balls could n-dim space contain?
qn >= M Vq(n, t) where Mis no. of codewords

- qn/M >= Vq(n, t) O"" ,:( t�:JJ, � M
Red?ndancy r := n - logµ �\lot Vq(n, t'f'

) 
�/ '--...,,,.,

-..

,. __ .�
<"

-• . ._ -~•••""'"'"•~,w-"'"'"''""'""....,_,�=: .. ' �,._.,�,/'- ----� 
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Perfect Codes 

Block codes that achieve the Hamming bound on 

redundancy. 

M must be of the form qk . 

A q-ary (n, k) t-error correcting code is related by 

I:;=o (1J')(q - l)j 
= qn -k

Example) Hamming, Repetition, Golay codes. 

©201x Heung-No Lee 

Linear Block Code (n, k) over GF( q) 

Code C is a vector space with dimension k. 

Linearity: For all a, b E GF(q) and v, u EC, av EC and av+bu EC. 

- If c is a codeword, c + (- c) = 0 is a codeword.

- dmin = min d(v, u) for v, u E C is equivalent to

dmin = min w(v - u) 

= min w( c=v - u, 0), over all c E C, 

- the minimum weight of non-zero codeword.

+:� Completely defined by G or H, where GHT=O 

- Gaussian Elimination gives systematic G and H.

❖ r = c+e. 

❖ Standard array: all possible c as the first row and some e as the coset

leaders.

©201x Heung-No Lee 
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Syndrome 

❖ Given the 1/0 relation r = c + e, a syndrome vector s is
obtained by

s = rHT = ( c+e )HT = eHT 
-Non-zeros indicates "there is a problem."

©20\x Heung-No Lee 
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23 

24 



* 

.. 

e 

1iil ; 

·fi;, r 
0 <> 

;,(\0 �) 

j; ij ll t) 

it, 

,::;; (0 1 ei 
¼* 41?,X'rtrr 

·�� z;,;,-·yuY- t;�,,,�;ii>,

l 

( o l 00 s::(l I I 

�r Y�. W©V<# 

f}(¾4:t;'E):'l"."'1'! 

ti] 

©20lx Heung-No Lee 25 

©20lx Heung-No Lee 26 



Standard Array 

It is a [2(n-k) x 2k] table of words on length n.

All 2n words appear once and only once. 

It shows decoding cells. 

The first row lists up all possible 2k codewords. 

The first column lists up all 2(n-k) distinct error patterns e 

that can be recovered. 

©201x Heung-No Lee 27 

Standard Array for a (5, 2) LBC 

Info bits 

Codewords 

Correctable 

Single 

Error 

Patterns 

Correctable 

Error 

Patterns (w=2) 

00 01 

00000 01110 

00001 01111 

00010 01100 
00100 01010 

01000 00110 

10000 11110 

10100 11010 
10010 11100 

❖ Construct it row by row

10 11 Syndrome 

10111 11001 000 
10110 11000 001 

10101 11011 010 
10011 11101 100 

11111 10001 110 

00111 01001 111 

00011 01101 011 

00101 01011 101 

,,. 

HT= 111 
110 
100 
010 

'-001 

- Make sure not to select the error pattern which have appeared already

When choosing the error patterns (1 st column), make sure they lead to

distinct syndrome.
©201x Heung-No Lee 28 
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dmin and Detectable Errors 

�:➔ dmin is the minimum Hamming distance between any two codewords in 
C. 
- The minimum Hamming weight of any non-zero codeword in C

Received = codeword(i) + error pattern
❖, When the error pattern itself is a codeword, then the received is a

codeword but is not the transmitted codeword (i).
This is an undetectable error event. It happens IFF the error pattern is a 
codeword. 

- Syndrome is zero.
Minimum weight of such error patterns is dmin .

An error pattern with weight less than dmin can always be detectable. 
A code with dmin 

can detect all error patterns of weight<= d
,,
,;,,-1. 

©20lx Heung-No Lee 

The Singleton Bound (Linear Codes) 

!0 The minimum distance dmin of a linear (n, k) code is 

bounded from above by d
min 

<= n - k + 1. 

An (n, k) code has a parity matrix which contains (n -k) linearly 
independent rows. 
The dimension of row space, and thus that of the column space, is 
(n-k). 
Thus, any collection of (n -k) + 1 columns of H has to be linearly 
dependent. 

©20lx Heung-No Lee 
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Example 

fl, 3 n-k+ 1 = 5-2+ 1 = 4

©201xHeung-No Lee 

Hamming Codes (Linear) 

A single-error correctingperfect code with m >= 2 parity 

symbols 

n = (q"'-1)/(q -1) 
- k = (q"'- l)l(q-1)-m 

- n-k=m

- dmin = 3
- The simplest Hamming code, m=3.

©20lxHeung-No Lee 
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Decoding of Hamming Code 

Compute the syndrome s = r HT = e HT

Can correct all error patterns of weight = 1 

For a single error occurred atj-th coordinate, the syndrome 

is equal to thej-th column ofH. 

Thus, decoding steps are 

1. Compute the syndrome.
2. If zero, then the rec. word is a codeword.
3. If not equal to zero, examine if any match can be found from the

columns ofH. Record the column index}.
4. Complement thej-th bit of the received word.

©201x Heung-No Lee 
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q-ary Hamming Code with m parity symbols

Consider q-ary m-tuples 

There are qm - I distinct non-zero vectors. 

For each vector v, there are (q - 1) vectors that are 

muitipies ofv 

- For all a E GF(q), a * (v1 , v2, v3, ... ) = (a*v 1 , a*v2, a*v3, ... ). 
- Thus, v and av are linearly dependent for all a E GF(q).

There are (qm - I) /(q-1) such sets of multiples. 

- Select one vector from each set as columns of H.

©20lx Heung-No Lee 
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Linear Cyclic Code 

A linear cyclic code is a block code that is closed under.._ 
cyclic shifts. 

Consider the following examples: 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

©20lx Heung-No Lee 

0 

1 

0 

1 

0 0 

0 1 

1 0 

1 1 

f ' ¥ l 

�-cyJlr;.; 

0 0 0 

1 1 0 

0 1 1 

1 1 1 

;✓o kc:: 
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C---\c\.\c, 0 '.
Polynomial Representation 

A codeword, c = (c
0

, c1 , ..• , cn_ 1 )

Polynomial: c(x) = c0 + c1 x + c2 x2 + ... + en-I xn-I

Cyclic right-shift by j is xi c(x) mod x11
- 1

-,
denoted as c(x)V) 

t;· :,=-== 
:: 

��'./Example:
,,,'fl _ 1 (: �

7 / 
G" 

µ - �,.,':1 -j- LY)-):;i 
- xc(x)=cox+c1x2+ ... +,n-lixnmodxn-I /Ci,,':t -

" � '_/ I _C,ll 

= en-I + Co X ... + cn-2 xn- mod xn -I -·-----�
- x2 c(x) = CoX2_+ C1 x3 + ... +en-I xn+I mod xn - 1

�.-.�J •-- : >-

= en-I x1 + Co x2 + ... + cn-2 xn mod xn -I
X + ... + cn-3 xn- I mod xn - 1

39 

Generator Polynomial g(x) 

Every cyclic code has a generator polynomial 
g(x) =go + gl X + · · · +gr £) 

- Let g, = 1, unique monic polynomial of rn inimum degree ( g
0 

=t- 0).
- It is a code,vord.

For a length n code,t£) n -k <= n -I.

g(x) generates its cyclic code. 
- m(x) is a message polynomial with maximum degree k-I.
- Then, every c(x)

= 
m(x)g(x) is a codeword. 

©201 x Heung-No Lee 40 



q-ary (n, k) Cyclic Code C

❖ C is a set of code polynomials.
❖Chas a unique manic polynomial g(x)-the generator

polynomial -with minimal degree r < n.
- For every cod� p�lynomiaf c(x) in C, c(x) = m(r) g(.Y).
-- g(x) i (:rr, -- lJ m C1F(qJ!xl. 

❖ FrontfMactorization of (xn - l ), we can select g(x) and h(x)
such that g(x)h(x) = (xn - 1).

❖ h(x) is a parity polynomial of degree k = (n - r).
�,\cc �h(x) = 0 mod (xn - 1). //
� 

/)'t (� e+ �It r':J ,r:( �'>c :�t/ t ?

©20lx Heung-No Lee
/J')'l( /<) � 0.(U. k .. � / ,

Generator Matrix G 

❖ c(x) = m(x) g(x) = (m0 + m 1 x + ... + mn-r-l x
n-r-l )g(x)

= m0 g(x) + m1 x g(x) + ... + mn-r-l x
n-r-lg(x)

= [mo m 1 • • • mn-r-1] [g(x); x g(x); ... ; xn-r-l g(x)]
·❖ Then, the generator matrix G is

❖ c = mG 

©20lx Heung-No Lee 

· · · 9r O 
] 

90 91 · · · 9r 
90 91 · · · 9r 

41 

42



s = C HT

c = (co C 1 ... cn- 1) 
H matrix is 

l 

GHT = 0

©20lx Heung-No Lee 

When n = qm - I, 

Parity Matrix H 

0 

0 
hk hk-1 ho 

hk hk-1 hoj 

Fact�[!� x
n -1

'-......-------- "--��---�---·--·-·---

All non-zero elements a E GF(qm) are then roots. 
Separate these non-zero elements into conjugacy classes. 

,___,� ...... -...__,,,...------·•''--. ..-..___ __ / ___ _ 

Compute the minimal polyn()mifll for ef!ch c:lass E GF(q)[x]. 
� . ,· -, ... _,�- -.. ... �-�---�·· \,., ___ .-· "�-----�,..,.----· ' 

When n divides qm - I, 
Look for element 13 with ord(l3)=n in GF(pm) 

- We know 1, 13, 132, 133, ... , 13n-1 are distinct roots of xn - I
• Roots are generated by the powers of p. So, these powers of p are

called the primitive n-th roots of unity.
- Separate these roots into conjugacy classes and compute the

minimal polynomials in GF(p)[x] of the associated classes.

©20lx Heung-No Lee 
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In general 

❖ The cardinality of a conjugacy class is the order of the
associated minimal polynomial.

❖ Number of classes #the number of minimal polynomials.
,� 

❖ Recall from Galois E eld Lectures
- If n I (qm -1), the ere are �(n) elements of order n in GF(qm).

❖ Fip.4 the malle extension field of a ground field
, 

\ I 

� 5 J (24 
- 1), but not (23 - 1), (22

- 1), or (2 -1). Thus, GF(16) is the
.. ··smallest extension field for finding primitive 5th roots of unity ('x"'- 1..) 

- GF(27) is the smallest extension field ofGF(3) for finding 
primitive 13th roots of unity 3 

- GF(125) is the smallest extension field of GF(5) for finding
primitive 3 ! 51 roots of unity 

'--�;�,<:' f) 'b =<s' Gr ( 3 l)

.3 f li_: __ /
t 
:_!_ 

©201x He;;; o Lee �� � 
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Factoring x5 - 1 in GF( 4)[x]

❖ Note m=2 is the smallest such that 5 I 4m - 1.
- We can find the primitive 5th roots of unity in GF(16).

❖ All elements of GF(l 6) can be represented by the powers
of a primitive element a.

❖ Note B:=a3 which is an order 5 element.
- By the definition of order, the powers of 13, 1, 13, 132, 133 and 134 (135 =

1) are distinct. , A 1 o ,,e.. J r - They are the 5 roots of x5 - I.
❖ Conjugate classes wrt GF(4) , ,.Li � 

- {I}. ⇒ xtl ,,�w�'t� 4-1, 
- {a3,(a3)4} ⇒ (x-a3)(x-a 12)=x2 + a 10 x + 1 \ � 
- {a6, (a9)4 = a9} ⇒ (x-a6)(x-a9) = x2+(a9+a6)x + a6a9 \

=x2+a5x+ I ) 

(':(�-f \ -.:: (X.1 !} (-rx'·t- fX
I/J 

./ )(i+ixl:;-i::..ft)· 
©201xHeung-No Lee J A- 47 

� 

Factoring x5 - 1 in GF(2)[x]

Conjugate classes wrt GF(2) 

- {I} ⇒ X + I

_ {a3, (a3)2, a 12 , a24 = a9} 
⇒ (x+a3)(.x+a 12)(.x+a6)(x+a9) = (x2 +a 10x + 1 )(x2+a5x+ 1)
=x4 + (a 10+a5) x3 + (a5a 10 +l+l)x2 + (a5+a 10)x + 1
=x4 + x3 + x2 + x + 1

- The polynomials are in GF(4)[x]

©201x Heung-No Lee 
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Binary Cyclic Codes of Length 7 

❖ Find g(x) I (x7 
-1) in GF(2)[x].

❖ m = 3 is the smallest such that 7 I (23 -1 ).
❖ The 7th roots of unity can be found in GF(8).

- They are in fact primitive elements.
❖ Find the conjugacy classes wrt a primitive element a.

- {I}, 1 
⇒ (x+l)

- {ct, a2, a4} ⇒ (x3+x+I)

- {a3 , a6 , a 12 = a5 } ⇒ (x3+x2+1
❖ Choose g(x) = (x+ 1) (x3+x+ 1) = x4 +x3 +x+ 1.
❖ Then, h(x) = (x3+x2+ 1).

©20lx Heung-No Lee 

Binary Cyclic Codes of Length 7 (Cont'd) 

❖ h(x) = x3+x2+ 1

❖ H =
[
1 1 0 1 

] 1 1 0 1 
1 1 ·o 1 

1 1 0 1 

❖ m(x) = (1 +x), c(x)=m(x)g(x)=l +x+x2+x5 
⇒ (11 1 0 0 1 0)

©20lx Heung-No Lee 
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4-ary Cyclic Codes of Length 5

❖ We have factoredx5 -1 in GF(4)[x].
(x5 

-1) = (x+ l)(x2 + Px + l)(x2 + yx + 1) 
❖ They are polynomials in GF(4)[x].
❖ GF(4) = {O, 1, p = a5 , y = a 10}

Recall the table, but we want to use 2 = p and 3 = y.

+ 0 I 2 3 * 0 I 2 3 

0 0 I 2 3 0 0 0 0 0 
1 I O 3 2 1 0 I 2 3 
2 2 3 0 I 2 0 2 3 I 
3 3 2 I 0 3 0 3 I 2 

©20lx Heung-No Lee 

4-ary Cyclic Codes of Length 5 (Cont'd)

❖ Choose g(x) = (x+ l)(x2 + y x + 1) = x3+(1 +y)x2+(1 +y)x+ 1
= x3+ p x2 + P x + I. 

❖ Then the corresponding h(x) = x2 + p x + I.
❖ Thus, they are for (5, 2) 4-ary code.

m(x) E {a+bx: a, b E GF(4)}
- c(x) = (y + Bx) g(x) = Bx4+(y+ B2)x3 +(yB+B2 )x2 +(yB+B)x+ y

= Bx"+ 0 x3+ B x2 + y x+ y 

corresponding to codeword = (y, y, B, 0, B) 

❖· G = [1 B B 1 ] and
1 B B 1 

�t(J)� � f Yf o

©20lx Heung-No Lee 

+6\

H =

[
lBl 

J1 B 1 
1 B 1 

51 
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Systematic Encoding 

•!" Consider (n, k) cyclic code with g(x)

❖ m = (m0, m1 , ... ,mk_ 1) {::} m(x)=m0
+m 1x+ ... +mk_ 1xk-I 

❖ xn-km(x) = moXn-k+m 1
xn-k+I+ ... +mk-Ix

n-1

{::} m = (0, 0, ... , 0, m0, m 1 , ... ,mk_ 1
) 

xn-km(x) = Q(x)g(x) + d(x) where degree(d(x)) � < degree(g(x))=n-k�r-- . , 
❖ c(x) := [xn-km(x) - d(x)] = Q(x)g(x) is a valid code 

polynomial. 
❖ c = [-do, -d1 , ... , -dn-k- 1 , mo, m1 , ... ,mk- 1]. 

©201xHeung-No Lee 

Systematic Encoding Rule 

❖ Multiply the message polynomial by xn-k. 
❖ Divide the result by g(x) and get the remainder d(x).

e=:0-:m(x)��(x). J{

©201x Heung-No Lee 
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Systematic Encoding of (5,2) 4-ary Code 

❖ G =n p p 1 ol and H =
Ll
l O O 1 p

] l!3p10U OlOpp 
0 0 1 p 1

©201x Heung-No Lee 

Syndrome Error Detection 

❖ For systematic code

Note the codeword c=(-d0 , -d1 , ••• , -dn-k-l• m0, m1 , ••• , mk_ 1 )

❖ The received r = (-d' 0, -d' 1, ... , -d' n-k-l• m' 0, m' 1, ..• , m' k-l)

Compute the estimate ofthe remainder d*= (-d*
0 , -d* 1 , ••• , 

-d* 
n-k-l) using the received message block m'.

❖ The syndrome is s = d' - d**

No� '9 % H T,,- � t1 f] r;:1 
� ;!_ / -t pT !!'.!" 

©201x Heung-No Lee 
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Syndrome Error Correction 

❖ Or, it can be obtained fro r x = a(x) g(x) + s(x),
degree(s(x)) < degree(g(x)) = n -k.

❖· Tabulate the error pattern for each syndrome.

❖ Or, use the shift register circuits for decoding.

©201x Heung-No Lee 

Syndrome Error Computation 

·❖ r(x) = r0 + r 1x + . . .  +rn_1x
n-l

❖ By cyclically shifting the coefficients of r(x) once to the
right we have

r<l)(x) = rn- 1 + roX + . . .  +rn-2x
n- 1

❖ x r(x) = roX+ r 1x
2 + . . .  +rn_ 1x

n

❖ r(l)(x) = xr(x)- rn-l (x
n - 1)

❖· Express r(x) and r(l)(x) as multiples of g(x) and remainders

r(l)(x) = x(a(x)g(x) + s(x))- rn-l g(x)h(x) = b(x)g(x) + d(x)
,v.,_. 

-'\/ 
--

❖ xs(x) = [b(x)- xa(x) +rn_ 1 h(x)]g(x)+ d(x) '' 
�SC£) 

❖ Thus, xs(x) mod g(x) is the syndrome for r(l)(x)
---------------

� (,I) 

� <x) ©201x Heung-No Lee 
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Summary of Linear Cyclic Codes 

©201 x Heung-No Lee 

What's in Moon Ch3. and Ch4? 

Mac Williams Identity 

Soft-Decision Decoders 

Coding Gain 

Shortening/Extending Block Codes 

©20lxHeung-No Lee 
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Midterm 

Oct. 27th
, 2010, Wednesday 

One single page cheat sheet 

Coverage 

- Moon Chapters 2, 3, 4, 5, 6

©201x Heung-No Lee 

HW#3 

Problem #1: 

Moon P3.3, P3.8, P3.20, P3.26, P4.l, P4.9, P4.l l, P4.15 

Problem #2: g(x) = x6+3x5+x4+x3+2x2+2x+ I is the 

generator polynomial for a (15, 9) double error correcting 

code over GF( 4) 

- A) is v(x) = x 10+3x2+x+2 a codeword?

- B) Compute the syndrome polynomial ofv(x)

- C) How many syndrome polynomials must be tabulated to cover

all correctable error patterns?

©201x Heung-No Lee 
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BCH and Solomon Codes 

Ref: Moon Ch 6, Wicker Ch. 8, 9 

©20lx Heung-No Lee 

Brief History 

Algebraic cyclic codes, done mostly in 50s and 60s. 

Code design: Hocquenghem[59], Bose and Chaudhuri[60], Reed and 

Solomon[60] 

- Guaranteed /-error correcting code. 

Decoder designs in 60s: Peterson, Gorenstein and Zierler, Chien, 

Forney, Berlekamp, Massey 

Berlekamp's iterative algorithm and Chien's search algorithm considered 

most efficient 

Decoder design in 90s: Sudan and Guruswami's list decoder capable of 

decoding beyond the design distance of the code. 

- Covered in Moon Ch. 7, better to read their papers. 

C9201x Heung-No Lee 



Motivation for Studying BCH and RS Codes 

Most successful algebraic codes. 

What is the current status of these codes? 

- Google, Wikipedia

©20 Ix l Ieung¥No Lee 

Coverage in this course 

Code design 

Review of some basic decoders 

r(�'"/fl1v- i-I"'"n3-1\lc 1 "'"' 





Generator/Parity Check of BCH codes 

g(x) = LCM of minimal polynomials for tlie D consecutive powers of
a. 
- LCM is the sufficient condition that the roots of g(x) are the D consecutive

powers ofa.
C +tr:i'tC;ilt ". -t C, r, -, rx._

"" - '
� 0 

A code polynomial c(x) is a multiple of generator polynomial. ( 9
c
(
ah) = c(a,b+I ) = ... = c

(
a,b+D-l) = 0 for some b = 1, 2, ... )

- Nomenclalure: Narrow sense (b = I) andprimilive (n = q"' - I) 

Considers = ffcT:

-r� 1 

J>.,_i,, ... J:
� 

l1

a2b 

a2(b+I) 

a2(b+2) 

a3b 

a3(b+l) 

a3(b+2) 

ab+D-1 a2(b+D-1) a3(b+D-l) 

�'tp�

a(n-l)b =O 

(��. ?n u,'lW'\ou..�-r--

'),t/,\),

1)��� .AJ p
7,,. �"��� a support set of indices, {i

1
, i2, ••• , iw}, on which the codeword U . '--?.,il-•tJ -

<_:;; coefficients are non-zero.
� � ,-,- Note then that the weight of the codeword is w. 'v yvo\i� 

� 
❖ Proof by Contradiction: Suppose w S: D, and show it leads to

contradiction Mi 

'1�?'0

1
�

1 
[ 

dl
b 

a71(b+l) d2(b+1) 

dl(�D--1) d2(�D--1) 

d"/J 

l 

Ci] 

dw(b+l) c,2

d"(�D--l) 
C 'w

- This matrix is D x w. 

- The w columns should be linearly dependent. 
- However, a mathematical fact dictates that the matrix is full rank and thus

the columns are linearly independent. (see next page) 
- Thus, any weight w should be w > D.

(02O1x Heung�No Lee 



Proof of the BCH Bound(2) 

❖ (Since w ::; D, we can eliminate the rows from below and obtain a square w x
w matrix.)

,j❖ This leads to det(H) ct- 0:

det(H) = a h (i1 + ;2 + ···+iwl 

1 

a il 

1. 1 

a
t2 a'"' 

=u b(i1 + i2 + ··- + iw) IT (aik -a;.i )+o 

t,;j<hw 
Q.E.D. 

©201x Heung-No Lee 

Binary BCH codes of length 31 

(Primitive BCH codes) 

Let a be a primitive element of order 31 in GF(32). 

Use the add-one tables, and Appendix C and Appendix D 

to find the conjugacy classes and the minimal polynomials 

Exponents of a Minimal Polynomials 
(Cyclotomic Cosets) , 1 2- $ 1,V
Co = {O} r/' l l l �(o) = x+ 1 

C1
= {1, 2, 4, 8, 16} > '  J J M = xs+ x2+1 (I) C3 = {3, 6, 12, 24, 17} M( 3) = x5 + x4+x3 + x2 + 1 

C5 = {5, 10, 20, 9, 18} M( S) = x5 +x4+x2+xI + I 
C7 

= {7, 14, 28, 25, 19} M(7) = x5 + x3+x2 + xi+ 1 

ell = {11, 22, 13, 26, 21} M
(ll) = x5 + x4+x3 + xi+ 1

C15 = {15, 30, 29, 27, 23} M( IS) = x5 + x3 +I 

/C201x Heung-No Lee 10 



Cyclotomic Cosets 
modulo :zm - 1 

Minimal Polynomials of 

Elements In GF(2"'J 

I 

Wicker 

Wicker 

C:l'HUf) 

i
'
JJ 

'" 



Example BCH codes 

Binary BCH codes 
})= '( == ll1.,..k 

- A t = l error correcting (31, 26) primitive BCH code (D = 2t = 2)

- A t = 2 error correcting (31, 21) primitive BCH code (D = 2t = 4)

©201x Heung-No Lee 13 

------

4-ary BCH codes of length 21

❖ First, find the extension field GF( 4m) which contains a

primitive 21st root of unity y.

- Such an mis 3. Thus, it's GF(43=64).

- We can let y =a3 where a is a primitive element ofGF(64).

'❖ Second, decompose the 21 roots into conjugacy classes 

(taking it to the powers of 4d, d= 0, 1, 2, ... ) 

- Find the minimal polynomials associated with each class, note that
the coefficients are from the ground field GF(4) = {O, 1, y7 = �' y14 

= �2}.

©201x Heung�No Lee 14 



Cosets and Minimal Polynomials 

for 4-ary BCH of Length 21 

Exponents ofy 
(Cyclotomic Cosets) 
C0 = {0} 
C l

= {1, 4, 16} 
C2 

= {2, 8, 11} 
C3 

= {3, 12, 6} 
C5 

= { 5, 20, 17} 
C7 

= {7} 
C9 = {9, 15, 18} 
C 10 

= {10, 19, 13} 
C 14

= {14} 

©20lx Heung-No Lee 

Minimal Polynomials 

M(0>
= x+ l 

M(I) = x3 + p2 x + 1 

M(2)
= x3 + px+ 1 

M(3) = x3+ x2 + l

M(5 > = x3+ pz x2 + 1 

M0>
= x+ p 

M(9) 
= x3 + x + 1 

M 1o = x3 +px2 +1 

M,4 = x + p2 

Non binary BCH code examples 

Non Binary BCH codes 

- Use Appendix B only

- 4-ary BCH codes of length 21
• t = I

• t = 2

(("l:201x Heung-No Lee 
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Some Design Considerations in BCH codes 

The redundancy r is the number of roots in g(x). 

Int-error correcting BCH codes, having 2t consecutive powers in g(x) 

is the sufficient condition for having 

dmin 2 2t + 1. 

For the same error correction capability, a code with a higher code 
rate, or with a lower redundancy, is certainly desirable. 

g(x) contains more roots than required number of roots, r 2:: 2t. Why? 

- The cardinality of conjugacy class is greater than 1.

- The extraneous roots are conjugates of the desired roots.

❖ One way to deal with this problem is to

- Choose the starting power exponent d wisely, i.e. ab, ab+1, ..• , a,b+D-1 so
that the number of extraneous roots are minimized.

©201x Heung-No Lee 17 

Some Design Considerations in BCH codes (2) 

The larger the cardinality of conjugacy classes, the more g(x) contains 
extraneous roots. 

Now, let's think about how to reduce the cardinality of conjugacy 
classes? 

Observation: the cardinality is smaller for 

- Primitive codes such that n = q"' - I for a fixed q-ary symbol alphabet.

- Codes with the size of code-symbol getting closer ton.

❖ Reed-Solomon Codes

- qm-ary BCH codes of length q"' - I.

©20lx Heung-No Lee 18 



Reed Solomon Codes 

❖ RS codes are q"'-ary BCH codes of length n = q"' - 1.
- The primitive n-th roots of unity are in GF( q"').
- Let a; be such one, and then the powers of a are the n distinct non-zero field

elements in GF(n+I). 

❖ Now, consider t-error correcting codes.
❖ The minimal polynomials for each element in GF(q"') wrt GF(q"') are

first degree polynomials, i.e.
(x-a•),fors = O, l, . . .  ,n. 

-· The size of conjugacy classes is always equal to l ! ! 

❖ Thus, g(x) is the product of2t first degree polynomials, i.e.

g(x) = (x - ah) (x -ah+1 ) .•. (x - ah+21 -1) 

©20lx Heung-No Lee 

Reed Solomon Codes 

19 

The minimum distance of an (n, k) RS code is dmin = n-k+ 1.

Achieves the Singleton bound, and thus they are maximum 
distance separable codes. 

©201x Heung-No Lee 20 



Examples of RS codes 

The t = 2 error correcting RS code oflength 7. 

The t = 3 error correcting RS code of length 7. 

The t = 3 error correcting RS code of length 63. 

©20 Ix Heung-No Lee 

Decoding Outline 

Compute the syndrome 

❖ Determine the error locator polynomial.

Find the roots of the error locator polynomial.

Determine the error values. (for non-binary case only)

(IJ201x Heung-No Lee 
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Decoding 

Note that g(x) is selected to have its zeros the 2t 
consecutive powers of a such that 

g(a) = g(a2) = . . .  = g(a21) = 0. 

Thus, c(x) = m(x)g(x) = c
0 

+ c
1 
x + ... + e

n
-I x

n-l must have

the 2t consecutive powers of a as zeros. 

r(x) = c(x) + e(x), e(x) = e0 
+ e 1 x + ... + en

-I x
n-l

©20lx Heung-)fo Lee 

Syndrome, Error Values, and Error Locators 

The syndrome can be evaluated at each and every 2t zero: 
s(x) = r(x=al)

where}= 1, 2, ... , 2t.

❖ Let's call S1 = r(x=a/) = e(al) = L1c=on-l e
k 

(aJ)k. Note that this can be
evaluated using the receive polynomial r(x).

/_,,
,.,

-

( 
Ass�me Pen-ors happened in coordinates i 1 , i

2, ••• , ip, then 
S

1 
= I;�JP e 1 ( a/)'P

=(binary lase only) Lp�1
P ( aJ)ip = IPp�i XJ, 

for}= 1, 2, ... , 2t.

Note : ' ( u)'t' indicates the coordinate iP of the error_ 
Ex) e = (0 0 e

1 1 
0 0 0 0) =;, i 1 = 2, i

2 
= 4. 

ccnOlx Heung-No Lee 
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Syndrome Equation wrt P Error Locators XJ 

The 2t syndrome equations are 
S

1 = e; X1 + e; X2 + ... + e; Xp 
I 2 P 

S
2 = e;

1
Xi2 + e;

2
X/ + ... + e;

P
X/ 

(1) 

How do we find the e1TOr locations {X
p
, p= 1, ... , P}? 

©201x Heung-No Lee 

Error Locator Polynomial A(x) 

Consider the error locator polynomial A(x) that has the P 1/X
P 

as its 
s, i.e. 

t(l-Xpx) 
xP + Ap

_1xP-I + ... + A
1
x + A

0
• 

❖ We can express the coefficients A
P 

wrtXP, i.e.
Ao = 1
A

1 = X1 
+ X2 

+ . .. + Xp 
A2 =X1X2 + X1X3 + ... 

(2) 

CQ20lx Heung-No Lee 
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Newton's Identities (Binary case) 

Using (2), (1) can be rewritten as 

S
1 

+A 1 =O 

S
2 

+ A
1
S

1 
+ 2A

2 
= 0 P = 4 Example 

S
3 

+ A
1
S

2 + A
2S1 + 3A

3 
= 0 

S
4 

+ A 1
S

3 
+ A2

S
2 

+ A
3
S 1 + 4A4 = 0 

S
5 

+ A 1S4 + A2S3 + A3
S2 + A4

S 1 = 0 

Note that there are 2t equations and up to four (P=4) unknowns. 

©201x Heung-No Lee 

Newton's Identities (Binary case) 

27 

Assuming binary case and P = t etTors have occurred, the syndromes 
and the coefficients of the error locator polynomials are related by the 
following: 

S
1 

+ A 1 = 0 
S

3 
+ A

1
S

2 + A2
S

1 + A
3 = 0 

S
5 

+ A
1
S

4 + A2
S

3 
+ A

3
S

2 
+ A4

S 1 + A
5 = 0 

In binary case, S
21 

= S/ 

K"!201x Heung-No Lee 28 
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Peterson's Direct Solution Decoding Algorithm 

(Binary) 

Ix /matrix 

❖ AA = 

0 0 0 0 0 AJ -SJ 
S2 SJ 0 0 0 A2 -S3 
S4 S3 Sz SJ 1..,. 0 0 A3 -S 

S2,-2 S21-3 S21-4 Sz,-s ··· s, s,_J A, -S 2,-1 

❖ A is non-singular (thus the equation has a unique solution) if there are tor t-1 errors in the rec. word. [Peterson]
❖ If fewer than t - l errors have occurred, A is singular.❖ Then, eliminate the two bottom rows and the two rightmost columns of

A and see if the remaining matrix is non-singular.❖ Proceed with decoding if non-singular; otherwise eliminate more.❖ And so on for even fewer errors.
«:)20lx Heung-No Lee 29 

Chien Search 

❖ Once the error locator polynomial is found, use the Chien Search (a systematicexhaustive search over all elements in GF(2m)) to find the roots.
: ______________ A;(Fd) --: •!• A(x) = np=l p (I -Xp x) =jAp x

P + Ap_JxP-l + ... + A1X rt- 1. 
'---------------------------------------' 

❖ Take a primitive element a and find all roots x s.t. A(x) = 0.
❖ By definition, Y,,-: := (u.)-'P. Thus. i(ihe CS gives \(>' := rx'. then\, n:i_ p 

A, A-I-=- ex /)11' ,,z 2-/l tt + "' * C( I\(
� , =)(1,2, ... ,2"'-l.

- �l • • • �A, 4, :C / 2../1, ( l_\ 'z

(\ 

,\-

1), < I 2.- 0\ 11/+\cl) 
1 

"' 

o( {\ 
er er ( _&.a1\'l, ap 

t....._ fX.7 ! � \ 

©20lx Heung-No Lee Figure 6,1: Chien search algorithm, 30 



Peterson's Direct Solution Decoding for Binary t-Error 
Correcting BCH Codes 

Compute the syndromes for r(x): {5i} = {r(ai)},j =I, 2, ... , 2t.

Construct the syndrome matrix A. 
Compute the determinant of A. If non-zero, go to step 5. 
T f zero, reconstruct a smaller matrix A by deleting the two last 
columns of old A. Go to step 3. 
Solve for A and construct ELP A(x). 
Find the roots of A(x). 
- If the roots are not distinct or no roots, then declare decoding failure.

Else, go to step 7.

Complement the bit positions in r(x) indicated by the ELP A(x). 
Verify if the resulting c01Tected word satisfies all 2t syndrome 
equations. 
- If not, declare decoding failure.

©201x H�ung-No Lee 

Some Simple Cases 

Single Error Correcting 

- A1 =S1 

Double Error Correcting 

- A 1 =S1 

- A
2 

= (S3 + Si3)1S1 

Triple Error Correcting 

- A
1 =S1 

((.)20 Ix Heung-No Lee 

A
2 

= (Si
2S3 + S5

)/(Si
3 + S3)

A3 
= (S1

3+ S3) + S 1 A2 

31 
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Binary Decoding Examples 

Double error correction using the Peterson's algorithm 
with a code capable of correcting up to t = 2 errors. 

Single error correction using Peterson's algorithm with a 
code capable of correcting up to t = 3 errors. 

©20lx Heung-No Lee 

servation from the two previous exampl 

The first example shows that the algorithm must chec the 
singularity of the largest t x t matrix. 

6J 
r�__,.-..,2 ---,--:;?�. ru. .. - \W' ' .. · · l - .--r� 1-,;-t,m:: l -x-1 II��• "f 

- But for P = t =�he2x Zuatrix A is also singular.

❖· The secon example shows that the 3 x 3 matrix is
singular; finds 1 x 1 matrix non-singular.

Thus, we must check singularity of the largest t x t matrix 
A anyhow. 

(Q20lx Heung-No Lee 34 
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Decoding of Non-Binary BCH codes 

Not only the error locations but also the error values need to be 
determined. 

❖ Using 2t roots, we get up to 2t equations, which contain up to t
location-unknowns and up to t error-value unknowns.

Perterson-Gorenstein-Zierler algorithm

Berlekamp-Massey algorithm
- LFSRbased 

Euclidean algorithm 

©20 Ix Heung<'./o Lee 

The PGZ Decoding Algorithm 

Take the error locator polynomial again 
A(x) = IT

P
�t (1 -X

P
x) 

= Ap x
P +Ap_ 1x

P-I + ... +A1x + 1. 
Atx = X- 1 

p ' ,----------------------------- ---------------, 

A(X/) =!��/--�-�P-i·:l'/�
+

� _+ __ · .. �--�'��1
-� __ l __ =c_�- i 

(3) 

forj=P+I, ... , 2P. 

((l20lx lleung-No Lee 
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The PGZ Decoding Algorithm 

Ix I matrix 
A'A= 

SI S2 S3 S4 s,.1 s, A, -S1+1
S2 S3 s, Ss s, s,.1 A,.1 -S1+2 

S3 S4 Ss s6 S,1-1 s, A,_, -Stu 

s, S,+1 S,-1-2 S,u s"·' S.:,-I A1 -S
21 

A' is non-singular (thus the equation has a unique solution) ifthere are 
terrors in the rec. word. If fewer than terrors occurred, A' is singular. 
[Gor61],[Blahut84] 

Then, eliminate the bottom row and the rightmost column of A' and 
see if the remaining matrix is non-singular (see iflA'I * 0). 

Proceed with decoding if non-singular; otherwise eliminate more . 

.:;, And so on for even fewer errors. 

©201x Heung-No Lee 37 

Error Value Computation 

❖ Once the P error locations are known, the first P syndrome equations

can be used to find the error values.

Note that it is a Vandermonde matrix with P non-zero distinct values. 

- Thus, non singular!

((:)201x Heung-No Lee 

x
i' 
2 

X�j[e;, j [s
1 j�P e'., = �2 . . . . . . 

x: eip SP 
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The PGZ Decoding Algorithm 
[Wicker, pg. 216] 

Compute the syndromes. 

Construct the syndrome matrix A'. 

Compute the determinant. Ifit is non-zero, go to 5. 

Construct a new syndrome matrix by deleting the rightmost column and the 
bottom row. Shorten A by one coordinate position by deleting A

1 
for the 

largest remaining t. Go to 3. 

Solve for A and construct A(x). 

Find the roots of A(x). If they are not distinct or A(x) does not have roots in 

the desired field, go to I 0. 

Construct the matrix B and solve for the error values. 

Subtract the error values from the values at the appropriate coordinates of the 

received word. 

Output the correct word and STOP. 

Declare a decoding failure and STOP. 

©201x Ileung-No Lee 

Decoding Examples 

Double error correction using (7, 3) RS codes capable of 

correcting t = 2 errors. 

(CJ20lx Heung-No Lee 
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The Berlekamp-Massey Algorithm 

Computationally efficient than the Peterson algorithm. 

It uses eq. (3) where P the number of errors is unknown. 

It builds the order P error locator polynomial starting from scratch, 
say order L = 0. 

See if the current polynomial can generate the observed syndrome 
sequence, starting from the first syndrome, say k = 1. 

When the polynomial is not the c01Tect one, discrepancy between 
the output of the equation and the observed syndrome will occur. 

Use the discrepancy to update the polynomial, and continue until 
the updated polynomial is capable of generating all 2t element of 
the syndrome sequence, k = 2t.

©20l x Heung-No Lee 

The Berlekamp-Massey Algorithm 

Five basic parameters: 

- the indexing variable k

- the connection polynomial ACkl(x) =A0k +A
k
_,xk-t + ... +A

1
x + 1,

- the correction polynomial T(x), 

- the discrepancy L',Ckl, and

- the length l of the shift register.

The syndrom � can be expressed in a recursive manner (Recall (3)): 

-SJ= APSJ-P + Ap_]Sj-P+l + ... + Al S
J-1 

···, s,_p_3, s1-P-2, s1-P-1 

(('201x Heung-No Lee LFSR Interpretation for the Syndrome 
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The Berlekamp-Massey Algorithm 

Compute all 2t syndromes for an r(x). 
Initialize: k=O, _A(kl(x) =l, L=O, and T(x)=x. 
Setk= k+ 1. Compute the discrepancy D,ikl: /1(k) = S - "A (k-I)S k � I k-1 

t If D,(kl= 0, go to 8. 

t=1 

Modify the connection polynomial: A (k) (x) = A (k-Il (x)- /1(kJT(x) 

lf2L 2: k, go to 8. 
Set L = k-Land T(x) = J\ 1'-'1(x) / LI. JkJ 

it Set T(x) = x T(x). 
\J. If k< 2t, go to 3. 

Determine the roots of A(x)=A121l(x). Tfthey are distinct and lie in the right
field, then determine the error values, correct the corresponding locations in 
the received word, and STOP. 

l I. Declare a decoding failure and STOP.

©20lx Heung--:--Jo Lee 

Key Equation for BCH/RS Decoding 

A(x)S(x) = Q(x) mod x21

We define 
21-I 

Syndrome polynomial S(x) := L S
1 + 1 x 1 

j=O 

Error value polynomial Q(x) 

(CJ20lx Heung-No Lee 

Q(x) := S(x)A(x) 
=(S1 +S2 x+···)(l+A 1 x+A 2 x+···) 
=:no +n1x+n2x

2 +··· 
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Key Equation (2) 

Note that EVP contains the error values<;
/J 

Q(x) := S(x)A(x) = (� S1+ 1
x1 )A(x) mod x2

' 

=[t(te,rxt}1 ]A(x) modx''
=[te,rXP�(xxP)1 ]A(x) modx"' 

r=' I Xrx 
P 

=[fe,pxr[l-�xxr)"']]A(x) modx2
' 

Use A(x) = fl (1- X
1
x) = 1:>,,J1JJ (1- Xix) 

©20lx Heung-No Lee 

p=l l"'1'p 

�·-
_,,_.,,,,,,,.,�-�·•�" 

,.� 

l=l 

45 

,_.,_,��,�,,,;;as fa· • 
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/

'.r 

Definitµni' 6,5 Let f(x) =Jo+ J1x + fix2 +-- · + f1x' be a polynomial with coefficients in sqni� field F. The formal derivative f' (x) off (x) is computed using the conventional 
rwls of polynomial differentiation: f' (x) = Ji + 2hx + 3/3x2 + · • • + tftx'-1

, (6.33) where, as usual, mf; form E Zand f; E lF denotes repeated addition: mf; = ./1 + f; + · · · + Ji · 
m summands 

(6.34) 
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Some Decoding Examples 

Double error correction using (7, 3) RS codes capable of correcting t = 

2 errors. (Again with the Berlekamp-Massey algorithm) 

©201x Heung-No Lee 

The Extended E.uclid Algorith1p. fon{l(x) 
"-... "- - \ .. , , '· .., _ ,,,,, 

The key equation 
u+ \ 

A(x);) (x})= O(x) mod x 21 

is equivalent to 

Q(x) = Q(x)x21 

+ A(x)S(x) 
for some Q(x). 

t () 

47 

Thus, given A(x) and S(x), we may use the extended EA to

find O(x) as well.
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Summary 

❖ BCH and Reed Solomon codes have been used in many

app li cations.

- Cyclic codes, LFSR implementation.

Reed Solomon codes achieve the Singleton bound. 

·❖ In the light of new decoding methods [Sudan, Guruswami,

Koetter, etc], Reed Solomon codes are again in the 

research spot light. 

©201x Heung-No Lee 

Term Project Idea 1 

❖, Objective: Survey the literature with the objective of

finding out the state-of-the-arts in Reed-Solomon codes:

Read IEEE Transactions on Information Theory papers 

New encoders and decoders 

((1201x Heung-No Lee 

• Find and compare the maximum design distance D = 2t, the

maximum block length n, the rate region kin, etc. , each codec can

practically achieve today.

• What are the required complexity for each one (how fast the

algorithms are?)

• What are the target application areas for each?

• Come up with other relevant questions and answers.

49 
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Term Project Idea 2 

Objective: Show the possibility of using RS codes in a Compressive 

Sensing system. 

Use an (n> 128, k, D>6) Reed Solomon codec in MATLAB. ( or 

whatever programs available in the Internet, MATLAB, or the 

textbook) 

- Push n and D as large as possible.

- Note we need a low rate kin codes (Compression)

Use it as a Compressive Sensing system 

- Obtain a reasonable size picture, say a GTST logo, from the Tnternet.

- Compressively sense the picture using the RS code.

Compare its performance with the standard CS approaches 

Use a known CS approach (visit the L
1 

magic web-site or the RICE 

University web-site and download the relevant MATLAB program 

package) 

©201x Heung-No Lee 

HW#4 

Moon: P6.1, P6.2, P6.6, P6.11, P6.12, P6.14 

fi201x Heung-No Lee 

51 

52 



References 

[Gor61] D. Gorenstein and N. Zierler, "A class of error correcting codes in pm 

symbols," Journal of the Society oflndustrial and Applied Mathematics, 

Vol.9, pp. 207-214, June 1961. 

[Blahut84] R.E. Blahut, Theory and Practice of Error Control Codes, Reading, 

MA: Addison Wesley, 1984. 

[Royden] Royden, Real Analysis, 3rd Edition, MacMillan, 1988. 

[Wicker] S.B. Wicker, Error Control Systems for Digital Communications and 

Storage. Englewood Cliffs, NJ: Prentice Hall, 1995. 

❖ [Moon] T.K. Moon, Error Correction Coding:mathematical method� and

algorithms. Wiley lnterscience, 2005.

©20lx Heung-No Lee 

Convolut 

Ref: Moon Ch. 12, Wicker Ch. 11, 12 

53 



Agenda 

Brief History of Convolutional Codes 

- Peter Elias [1955], introduction ofC codes, instead ofblock codes, and list decoding,

instead of unique decoding.

- Sequential decoding algorithms in the 60s [Wozencraft, Massey's majority logic,

Fano, ... ]

- Forney's dissertation, RS code+ C code [1965), later adapted in Voyager I [ 1977)

Convolutional Code, What is it? 

- Feedforward form

- Feedback form

Maximum Likelihood Sequence Detection 

- Tree Search, Trellis Search (Viterbi Decoding)

State Diagram, Distance Spectrum, Performance Evaluation 

HW#5 

© 200x Heung-No Lee 

Voyager 1 's current location [2007] 
[Wiki2010] 

-

\\}J&;teti 1111B 

© 200x Heung-No Lee 
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Memoir of Gallager on Peter Elias 

© 200x Heung-No Lee 

Convolutional Codes 

Code words are generated by c(D) = m(D)g(D) 

- D is one unit delay of a shift register circuit

- g(D) is realized with a linear finite-state shift register

- The degree of m(D) can be infinite. So can be that of c(D).

Rate kin code, (k, n, K) CC 

- k information bits get shifted in at each D,

- goes thru K units of delay, (K is called the constraint length)

- generates n coded bits output at each delay

k bits 

© 200x Heung-No Lee 

n bits 

out 

4 
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Convolution (FIR) 

m(D) = 1 K = 3 

0 0 0 0 1- ......... _ g(_D) = l+D2+D3 

0 0 0 0 0 1 1 0 1 c(D) = g(_D) 

❖ From systems class, we know the convolution is

- Shifting the input sequence

- Multiplying the shifted input term by term with the filter coefficients

- Add up the product terms

- Shift the input sequence by one and repeat

❖ Here the input and the filter coefficients are binary and the summation

is module 2 addition

© 200x Heung-No Lee 

Feedforward Rate 1/2 convolutional encoder 

0 

U(D) 

0 

g
1 (D)-l+D+D2, and giD)=l+D2

G(D) = [gi
(D) giD)] 

Consider input U(D) = I +D2

❖ C(D) = [g1 (D)U(D) giD)U(D)] = [1 +D+D3+D4 1 +D4]

C=[ll , 10, 00, 10, 11]

© 200x Heung-No Lee 
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Soft Decoding 

•❖ y = x + n, x = 2c-1, and letN = length ofbinary.vector u.

❖:❖ One-to-one: u, c, and x 
Consider likelihood function p(ylx = x

i
), i = 0, I, ... , 2N -1 

p(ylx = xi) - p(n = y - Xi) 
1 1 II -1 -

(2rr)N/21Rnll/2 exp[-:/Y - Xi) Rn (y - Xi)]

Assume white noise such that�= crn2 In,

where crn2 = N0/(2E8)

© 200x Heung-No Lee 
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Soft Decoding (2) 

1 H 
- C · exp[--2(y - xi) (y - xi)]

2Cin 

l N-1

- C . exp[--2 L IY.i - ;-r;-ij 1
2

] 

1 2un FO 
l 

Common This term is what matters 

constant for all 

hypothesis x
i

N 1 
log p(ylxi) = -Ci · I:.i=O IYJ - Xijl 2 

where C 1 is positive 

© 200x Heung-No Lee 

Soft Decoding (3) 

Thus, we have 

u arg 1naxu.iEU p(ylui)
arg maxx·EX p(ylxi)7, 

© 200x Heung-No Lee 

arg 1naxXiEX log p(ylxi)
N-1

arg rninxiEX L IYj - Xij 12
j=O 

Euclidean distance 

14 
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Hard Decision Decoding 

When we only have hard decision r available, we can 

obtain 

u arg maxuiEU p(rlui)
arg rnaxciEC p(rlci)
arg rnaxciEC' dH(r, c)

N-1

arg ffi'lnc,iEC L wH(rj - Cij)
j=O 

Hamming Distance 

16 
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Tree Decoding 

The node metric at the starting node a is zero. 

Expand the tree, resulting in two branches for one node. 

At each branch, calculate the distance (Hamming or 

Euclidean) with the corresponding received symbol. This 

is called the branch metric.

Add the branch metric to the node-metric. The result 

forms so-called the cumulative metric. Record the 

cumulative metric at the node and use it for its offspring 

paths, in the subsequent tree expansion. 

© 200x Heung-No Lee 
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Tree Decoding 

00 

rtr

l a 

00 a 2 (6) 
2 (4) 

cw �
@) 10 00 a 11 b 

2 (2) 
10 

� b 01
01 

11 b 
0 (2) 

a 

I 1 
11 

input 1 0 

(1) 

a, b, c, d denotes the states 
b 11 

� 

(00), (10), (01 ), (11) 
0 (0) 01

d 01 

(I) 10

The same structure 
11 11 11 11 

18 

© 200x Heung-No Lee 

Tree Decoding 

❖ Observation: The same tree structure repeats after 3 rd expansion
❖ Consider the cumulative metrics of the two merged paths at node-a,

such that a-a-a-a and a-b-c-a. Let's call them cr(l) and cr(2)
❖ Let's assume another tree search decoder spawning out of node-a

starting from the 4-th expansion, and an optimal path a-x-y-z-... with
minimal metric path of length (N-3) can be found.

❖ Thus, the overall minimum of the two metrics associated with the two
paths, a-a-a-a-x-y-z ... and a-b-c-a-x-y-z ... , can be determined by cr(l)
and cr(2).

❖ This indicates that when some paths merge to a same state, an early

pruning decision can be made without loss of optimality.
❖ After pruning, the decoding on a tree can be done on a collapsed tree, a

trellis.

19 
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Trellis Decoding 

Received 11 11 11 11 01 

00 (2) 00

' 11

\ 

\ 
\ 

' 

's. 

\ 

\ 

(1) 00 (2) 00 (3) 00 

X purged

\01 
}\ 

\ 

Decided sequence is 

11 10 11 11 01 JO 

Flip coin when tie 
20 
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Viterbi Algorithm 

The algorithm shown is the Viterbi algorithm. 

Note that the number of states is 2Nm_ 

The number of branches is 2Nm + 1•

Let cr(j, k) be the partial cumulative metric at state j at the k-th trellis 

section. 

Set cr(j=a,0)=0 (Starting at the state a). 

At time k, compute the partial cumulative metrics for all paths 

merging to each state. 

Set cr(j, k) equal to the best partial path metric entering the node 

corresponding to state-j at time t. Break a tie with coin-flipping. Mark 

the best metric path. 

At the end of sequence, trace back the marked path for decoding. 

21 
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Travelling Salesman Problem 

Given a list of cities and their pairwise distances, the 

problem is to determine the shortest distance trip route in 

which each city is visited. (1930) 

An NP-complete problem. 

- Currently many heuristic algorithms are out there, and problems

with 10 thousands cities can be solved.

© 200x Heung-No Lee 

Continuous Viterbi Algorithm 

Making decision at the end of the sequence is optimal in 
the sense of MLSE: 
- Delay

- Memory requirement to store the survivor path metrics

Early decision reduces delay and memory requirement. 

In practice, decisions are made earlier than the end of the 
sequence. 

22 

The delay required to make this early decision is called the 
traceback depth ND. 

Ifwe make ND = N, the length of the sequence, the decision 
is optimal. 

' Ifwe make ND too small, the decisions will not be reliable. 

23 
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Traceback Depth (Moving Window) 
k-th

survivors 

� purged

© 200x Heung-No Lee 

ND 

Exploration depth 

At the k-th exploration depth, start to make 

decision on symbols at the (k- N
D 

)-th epoch 

that is stored in the current best survivor path 

Traceback Depth 

Looking at the contents of the survivors after exploring k time epochs 

At k-ND and further back in history, 

24 

Survivors (lnput--(uk uk-t uk_2 ••• )) 
it is highly likely to see a merge in survivors. 

0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 

0 1 1 I O O I O O O I O I O O 1 1 0 

0 I O I O O O O I O O 1 0 I O O O O 0 

I O I O O O 1 0 0 0 0 1 0 I O I I I O I 

1 0 0 0 0 0 1 0 I 

I O O O O O I O I 

0 0 0 0 0 1 I O 1 

I O O O O O I l O I 

Good traceback depth can be determined with 

Viterbi search of minimum free distance 

25 
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Catastrophic Convolutional Codes 

With a catastrophic convolutional code, a small error in the 

received code word can cause an unlimited number of 

errors. 

When does it happen? How do we know ahead of time? 

State diagram contains a loop with non-zero input which 

generates all zero outputs. 

© 200x Heung-No Lee 

Examples from Wicker 

Figure a Figure b 

© 200x Heung-No Lee 
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IFF Condition for Non-Catastrophic 

A rate 1/n code C is not catastrophic IFF 

- GCD of all the constituent generator polynomials is equal to D1 for
some non negative integer l.

Example of Figure b, 

- G<0l=D+D2+D3 , Q(ll=l +D+D2 

- GCD(GC0l, Q(ll) = 1 +D+D2 1:- D1 

© 200x Heung-No Lee 

Graphs and Weight Enumerators 

Weight enumerator is the generating function of an 

encoder graph 

Obtain a state transition graph, starting from the all zero 

initial state and ending at the all zero final state 

These states are the same states defined in the state 

diagram 

28 

We are interested in listing out all possible paths such that 

the state transition can possibly take, departing from the 

all-zero state and re-merging back to the all-zero state 

The label of branch records the weight of the output and 

the weight of the input 

© 200x Heung-No Lee 
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Example 

State Seq. So SI S3 s6 S4 So 
Input l l 0 0 0 

Output 11 10 11 01 11 

Branch Weights X2Y XY x2 X x2

Total Weights xsy2

Some Definitions: 

Loop, Forward Loop (starting at S0) 

Nontouching loops (no common state) 

30 

Transfer Function of State Diagram 

Consider the feedforward rate ½ code in Lecture-9 again 

l),-
, 

, 
- ► oo,: �G?>
- --

1 

© 200x Heung-No Lee 

Ex]) as
. b .. c., a

c
: W5Z 1L3 

• codeword weigths is 5

• Input weights is I

• Length of this path is 3

Ex2) a,, b, d, d, d, C, a
e
: W8Z4L6 

31 



Transfer Function 

Compute weight distributions for all possible state 
transitions from a

s 
to a

e

Define accumulated path label X;, which is an accumulation 
of all branch label from the initial state to i, as influenced 
by all other nodes 

© 200x Heung-No Lee 

Transfer Function from Simultaneous Equations 

❖· Let x
i 
denote the accumulated path labels of the node-i starting from

the initial state as influenced by all others

xb =A+ Dxc

xc = Cxb + Fxd

xd
= Bxb + Exd

. _ ACG(l-E)+ABFG 
l,ae - 1-l!J-lJ(C-CE+HF)

We call this the transfer function ACG(I-E)+ABFG 
T(w Z L) .-

T(W,Z,L)= 
, , .- Xae 1-E-D(C-CE+BF)

32 

W 2 Z 1 LW 1 LW 2 L (I-WZL)+W 2 Z 1 LWZLWLW 2 L 

© 200x Heung-No Lee 

1-WZL-ZL(WL -WLWZL + WZLWL)

W 5 Z 1L3(1-WZL)+W 6Z 2L4

I-WZL-WZL2 33 



Input/Output Weight Enumeration Function 

(IOWEF) 

-w'z r? +W6
Z

2 L4 +(W
7

Z
3 -W6 Z

2
)L5 + ...

1-WZL-WzL2) -W5l1 L3 +2W6Z2L4

-wsz 11,3 +W6z21,4 +W 6z21,5 

)w6 z2 L4-w6 z2 Ls 

w6z2 L4 -w7z3
L5-w7z3

1,
6 

)(w7z3 -w6z2
)L5+w7 z3 1,6 

We can let L = 1 for IOWEF. 

© 200x Heung-No Lee 

Transition Matrix 

'❖ In matrix notation, we have x = Tx + x
0 

where x := (x
6
, x

c
, x

d
, x

ae), x
0 = (A, 0, 0, 0), and T =

[

O D O O

JCO F 0 
BO E 0 
0 GO 0 

x = Tx + x
0 * x = (1 - T)-1 x

0

X = [I + T + T2 + T3 + ... ] x0

This tells us about the weights of all the error events 

Get x
e 

by multiplying with e4 := (0 0 0 1) 

© 200x Heung-No Lee
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L3 Error Events 

ACG = (W2ZL)(WL)(W2L) = W5ZL3 is the accumulated 
path label 

·· xe 
= e4 x0 + e4Tx0 + e4T

2x0
= 

= 0 + e4 
[

� � � �
] [ 

t ] + 
e4 u;� C� ;� O

u [ 
t ] 

B O E O O EB BD EE O 0 

0 G O O O 0 0 FG O 0 

=0+0+AGC

© 200x Heung-No Lee 
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L 4 Error Events 

CD2 DFE 

FBD CFD+FE2 

EBD BFD+E3 

GCD GFE 

36 
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L5 Error Events 

'·· Two paths: ABEFG +ACDCG = W7Z3L5 + W6Z2L5

· e
4 
T4x

0 
= ABEFG + ACDCG

© 200x Heung-No Lee 

Weights of All Possible Error Events 

Thus, e
4
x = e4 

[I+ T + T2 + T3 + ... ] x0

= e4 
[T2 + T3 + ... ] Xo 

This describes the weight distribution of the error events, 

arranged in different lengths. 

The free distance and error rate can be obtained from this. 

The free distance here is obtained from L3 term. 

- The weight of the codeword is 5, the exponent of W, which

corresponds to 1 bit error, the exponent of Z (Why? - the weigths

of higher order terms are greater than 5.)

© 200x Heung-No Lee 
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Minimum Free Distance dfree 

Most frequent decoding errors are due to wrong decisions made in 
favor of the nearest neighbors of the transmitted codeword. 

- These are undetected errors because these neighbors are valid codewords.

- Correct codewords are eliminated.

The minimum Hamming distance between all pairs of convolutional 
code words 

d · = min{d(c' c' ') I c' * c" 1-free • , J 

= min{w(c=c'-c") I c * O} linear code 

❖ Thus, we can determine d
free 

by assuming all-zero sequence as the
transmitted codeword, and finding out the weights of neighboring
allowed sequences

Thus, increasing d
fre

e at a particular constraint length is a desired
design criterion (Wicker 11.3: maximal mimimumfree distance codes).

One idea of the trellis code is to use Euclidean distance -- instead of the 
Hamming distance. 

40 
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Minimum Free Distance dfree 

Assumption: all-zero codeword was transmitted 

Find the distance of an error path from the all-zero word 

00 

'-'_.,,),s

""�,., 

'.':·.·":, 

© 200x Heung-No Lee 

00 00 00 

•,. \ 
\ \0 

.. ....,,,. \ 
' \ \ 

00 00 
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Determining dfree with Viterbi Algorithm

Consider a single sequence departed from the all-zero path. 

Run the Viterbi algorithm on all the resulting sequences of this single 
sequence. 

Compute the Hamming distance of the path from the all-zero 
codeword. 
- The accumulated path metric is the Hamming weight of all the codeword

bits along the path.

After running it for a while, find out the best path among the survivors 
- There is one survivor per state. The survivor at the zero-th state is the

minimum metric path. (Why?)

Not always is a path remerged in the shortest length the df,ee path. 
In other words, it is possible to see that the weight of a path re-merged at a 

length greater than the shortest merged path is smaller than the weight of 

the shortest path (Will see this in HW). 

42 
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Traceback Depth 

Traceback Depth (TD)?: TD is a number of delay units. After a delay 
by the amount of TD, the first decoded bit from the Viterbi decoder 
becomes available. 

How to set the TD right? 
One approach is explore the trellis starting from the all-zero path. At a 

certain depth of exploration, all accumulated metrics of survivors will 

become larger than the free distance. We can set this depth as the 

traceback depth. 

Viterbi decoding with a depth set larger than this traceback depth gives 

small improvement. 

The other approach is to set the TD to be "7 times the constraint length." 

This is a heuristic design rule of thumb. 

Will see this in HW. 

© 200x Heung-No Lee 
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Determining d
fr

ee with Transfer Function 

Evaluate the transfer function wrt W (let Z= l, L= l). 
- Use the transfer function in previous example

Note A=W2 , B=W, C=W, D= l, E=W, F=W, G=W2

( 1 - - ) _ lV5 -W6+1,V6 _ w5 
T M, Z - l, L - 1 - l-vv-w+w2-ii,r2 - 1-2W

Use 12D = 1 t D t D2 t D3 t ...

We have T(W) = W5 (1+2W+4W2+8W3+ ... ) 
= @+ 2W6 + 4W7 + 8 W8 + ... 

- 1 weight five path, 2 weight six paths, 4 weight seven paths, ...

© 200x Heung-No Lee

Erroneous Decision 

Let's assume all-zero codeword was transmitted 
Noise was so strong that it caused some of bits flipped 

Received 10 00 

00 

44 

Cost of this erroneous decision is 
1 information bit 

© 200x Heung-No Lee

How many bits, need to be flipped 
for this erroneous event to occur? 

Do location of errors matter? 
45 



Erroneous Decision (2) 

Transmitted codeword= (00 00 00 00 00 ... ) 

Received codeword = ( l 0 l l 10 00 00 ... ) 

Sequence of d
free

neighbor 

= (11 10 11 00 00 ... ), the nearest 

Need to pay attention on these positions 

Don't need to pay attention on this coordinate because the codeword 

bit is also zero (same as the all-zero codeword) 

• Whether it is flipped or not will not make a distinction in

making a comparison with the all-zero codeword

© 200x Heung-No Lee

Erroneous Decision (BSC) 

Let's assume all-zero codeword was transmitted 

, Noise was strong in some coordinates that it caused some 

of bits flipped 

Received !O Ji 00 

00 

46 

Costs of this erroneous decision is 

1 information bit 

© 200x Heung-No Lee

How many bits, need to be flipped 

for this erroneous event to occur? 

Do location of errors matter? 

47 



Erroneous Decision (2) (BSC) 

Transmitted codeword= (00 00 00 00 00 ... ) 

Received codeword = ( ! 0 l l l 0 00 00 ... ) 

Sequence of d
free

neighbor 

= ( 11 10 11 00 00 ... ), the nearest 

Need to pay attention on these positions 

Don't need to pay attention on this coordinate because the codeword 

bit is also zero (same as all-zero's) 

• Whether it is flipped or not will not make a distinction in

making a comparison with the all-zero codeword

© 200x Heung-No Lee

The Probability of Making Erroneous Decision 

(BSC) 

What is the probability of receiving a non-zero codeword 

with the required number of bits (three or more in our 

previous example) flipped on those critical coordinates? 

48 

This is called the pairwise error probability ( a pair between 

the error path and the all-zero one) 

49 
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Performance Analysis 

An error path leaves the all-zeros path, say at node S
a
, re-enters the node once 

with smaller partial accumulated path metric than that of the all-zero path 

Pairwise erroneous events are not disjoint. The underlying assumption of the 
union bound is that the pairwise error events are disjoint events. 

The node error probability P/S
a
) at node S

a 
is the probability of the union of 

all such pairwise error events 

© 200x Heung-No Lee 

Union Bound 

50 

A pairwise error event E/ Given all-zero sequence, ML decoder makes 
a decision in favor of a different path which departed from the all-zero 
path at S

a
, and re-merged to it once at a iater time. 

Consider all individual pairwise error (PE) events {E) that are possible 
from the node S

a
, and treat them as if they are disjoint events. 

Sum up all the PE probabilities. 

�rron�ous jath sJvives, 
---+-�--+--,,-----'--------v:.......... jelimi¥ting�healt-zero······ 

isequeh�e. 

© 200x Heung-No Lee 

51 



Basic Fact in Probability 

Pr{A LJ B} = Pr{A} + Pr{Ac n B} 
< Pr{A} + Pr{B} 

© 200x Heung-No Lee 

Union Bound (2) 

Let {E1 , E2 , •.. , En} be a collection of all the possible 
erroneous events, the probability of the union of events is 
less than or equal to the sum of individual probabilities 
P(E),j=I, 2, .. . 
Pr(E1 LJ E2 U ... LJ En) < Pr(E1

) + Pr(E2
) + ... + Pr(En) 

Each E
j 

denotes a particular pairwise error event 
Using this bound, we can say 
P/Sa)::; LcE ca Pr{r: p(r[c) > p(r[O)}

52 

where Ca is the set of all possible error paths diverged at Sa

from, and re-merged to, the all-zero path only once. 
We call Pr{r: p(r\c) > p(r\O)} the pairwise error
probability 

© 200x Heung-No Lee 
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Union Bound (3) 

P/Sa) < LcE ca Pr{r: p(r/c) > p(r/0)}

=: Lct=lnd Pd

where 
- d = weight( c ),
- nd is the number of paths with weight d,

- Pd := Pr{r: p(rlc) 2: p(rlO), w(c)=d}
= Pr{ r: TI

1
�/ p(r) 1 )/p(r)O) 2: 1} 

Now let's focus more on the pairwise error probability Pd

with weight d.

© 200x Heung-No Lee 

Indicator Function 

Taking expectation 

E{I(X > o)} = 1 * Pr{X>8} + O*Pr{X� 8} 

© 200x Heung-No Lee 
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Chernoff Bound 

LetX: Q ➔ R 
We are interested in approximating the tail pdf of X, such 
that Pr{X > a}, for the interval ( a, oo) 
Note that I {x > a} < eb(X -a) for any real b>O

On this domain, upper bound it with 
something larger than I for x>a 

And, here with something > 0 

a 
Taking the expectation on both sides 
E{I {x > a}} = Pr{X>a} < E{ eb(X -a)} = e-ba E{ ebX} for any
real b>O 
- We can find the optimal b that achieves the equality closely

© 200x Heung-No Lee 

Pairwise Error Probability P
d 

with weight d

For a path with weight d, we have 
Pd

= Pr{ r: nj=ld p(r) 1 )/p(r)O) 2: 1} 
Now consider the following (construct Chernoff bound) 

I {r'=(rl...rd): p(rj ll)/p(rjj0)2: I, for allj=l, ... ,d] O}

< nj (p(rj l 1 )/p(r)O))s Ir '=(rl, ... , rd I 0)

56 

{ (r 1, r2): p(ril 1 )/p(r)0)2: 1} 

(r 1, r2): entire surface 

-1 (0)

\ 

X 

57 
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Pairwise Error Probability P
d 

with weight d (2) 

Taking the expectation on both sides 
LHS =Pd

RHS = L(rl,r2, ... ,rd) rrj p(r)O) (p(rp)lp(r)0))8

= L (rl,r2, ... ,rd) nj p(rp)s /p(r)O)l-s
0!0 Thus, we have 

Pd < nj=l 
dLrj p(r) 1 )8 /p(r)0) 1 -s

❖ The best s which minimizes RHS and thus, making RHS as
close as possible to LHS, can be found.
When the channel is symmetric (A WGN, BSC, ... ), the
best s = ½. The bound with s= 1/2 is called the
Bhattacharyya bound.

© 200x Heung-No Lee 

Bhattacharya Bound on Pairwise Error Prob. 

Let c = (0 0 1 0 0 1 ... ) has d non-zero coordinates 
❖ Comparing c with all-zero codeword, and considering the

event that metric of c is favorable than all-zero codeword
Need to consider only the d non-zero coordinates

❖pd < nj=l
d [Lrj p(r)I)ll2 /p(r)O)ll2] = Qd

where Q = [Lrj p(r) 1 )If2 /p(r)O)If2]

© 200x Heung-No Lee 
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Union Bound (4) 

PeCSa
) < LcE ca Pr{r: p(r!c) > p(r!O)}

=: Lct=IndPd
Note n�the number of paths with weight d- can be 
readily obtained from evaluating the transfer function at 
T(W) = T(W, Z= l, L= l) 
Note that T(W) has the form 
T(W) = n1 

w + n2 w2 + n3 W3 + ...
Finally, the probability of error at node a is 

© 200x Heung-No Lee 

T(W, Z, L= l) for bit error probability P
b

T(W,Z) = n 1 , 1WZ + n 1,2 WZ2 + n 1 ,3WZ3 + ... +ni,jWizJ + ... 

60 

3rcw,z ) - wz 2 wz2 3 wz3 · Wi?iDZ - n1, 1 + n1,2 + nl,3 + · · · +Jni,j LI + · · ·
aT(vv.z) _ 2 i 

3z' lz=i- (n 1 ,1+2n 1 ,2+3n1 ,3)W+ ( ... )W + ... +( ... ) W 
= b

1W+b2W2+b
3
W3+ ...

where {bJ are the total number of nonzero information 
bits associated with codeword of weight i 
Thus, the average number of bit error rate 

1 aT(vV,Z) 
I Pb < k az iV=Q,Z=l 

© 200x Heung-No Lee 
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Union Bound BER equation 

Pb
= Ilk E[bi] 

= Ilk"· b- p. 
L..1 I I 

< Ilk [8 T(W,Z)/8Z]w=Q, z=1

For each trellis-section, k information bits are 
transmitted 

b
j 

denotes the number of information bits in error, 
associated with codeword of weight j 

P; is the pairwise error probability of weight i 

© 200x Heung-No Lee

Approximation of Pb

Obtaining the transfer function is difficult, thus often P
b 

is 

approximated by considering the paths whose weights are 

dfree

Where b
dfree is the number of non-zero information bits 

associated with the codewords of weight dfree

62 
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Q for Binary Symmetric Channel 

Q = [Lrj 
p(�il 1 ) 1 12 /p(r

j jO) ll2] = 2 J ( 1 - p )p

Note that r
j 

= 0 or 1 
When r

j 
= 1, p(lll) Il2p(ll0) 112 

= 
✓c1 - p)p 

When r
j 

= 0, p(OI 1 ) Il2p(OIO) Il2 = Jp
( 1 _ p) 

© 200x Heung-No Lee 

Exact Pairwise Error Probability for BSC 

Pd = Pr{half or more bits in d-coordinates are in error} 
" , ML decoding makes erroneous decision, 

- Ford odd, (d+ 1)/2 or more bits must be in error

• Ex) For d=5, 3, 4 or 5 bit-flips are needed

- Ford even, (d/2)+ 1 more bits must be in error

• Ex) For d=6, 4 or 5 bit-flips are needed. When 3 bit-flips, with
probability ½, ML decoding will make a wrong decision

© 200x Heung-No Lee 

64 

65 



Performance over A WGN 

Y
j 
= v?J;;x

j 
+ n

j
, j= 1,2, ... , 

For a particular pairwise error event with weight d: 

- For hard decision decoding, Hamming distance of I is counted

when x
j

=-1 for codeword bit O was sent but received was r
j 

2: 0.

- For soft-decision decoding, it will be a different story for soft­

decision decoding

Info. bits 

----encoder 

© 200x Heung-No Lee 

1 ➔ +I

0 ➔ -1 VA 

A WGN � N(O, a�=No/2) 

Performance over A WGN (2) 

Recall from Lecture-9, the ML soft-decision metric is 

I IY
j 
- xf, (Use Es = 1 for simplicity)

- We can use the absolute value for metric

Note what happens when using this Euclidean distance, 

instead of the Hamming distance 

66 

0.9 0 l 

(1.3) -1-1 

o --1.2 00 

00 

Under hard decision 

Decoding, all zero 

path gets eliminated 

© 200x Heung-No Lee 

Under soft-decision 

decoding, the 

erroneous path gets 

eliminated 
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Performance over AWGN (3) 

On those d non-zero coordinates ( d=5 in our example), find out the
probability of a particular receive signal Y

j 
with which the likelihood 

of all-zero path is smaller than that of non-zero one 
Since Y

j 
is Gaussian with mean = -1 and variance crn

2

Pd 
= Pr{ L IY

j 
-x

j
(error-path) 12 < L !Yi -x/all-zero)l2} 

= Pr{I
j
�Jd (\y

j 
-1\2 - \y

j
+l\2) < O} 

= Pr{L
j
�Jd Y

j 
> O} 

Y:= L
j
�Jd Y

j
, each Y

j 
are iid Gaussian rv's 

❖ Gaussian is defined completely with mean and variance
E(Y)= L

j
�Jd E(y

j
) = d*(-1) = -d

Var(Y) = L
j
�Jd Var(y) = d*cr/

© 200x Heung-No Lee 

Performance over A WGN (3) 

Let's use cr/ = Ni2 and an arbitrary E
b
, then we have 

Pd = Pr(Y > 0) = 

l f00 e 
✓1rdN0 Jo
q(✓2dEs)

No 
t2 

where Q ( x) : = i
7r 
r: e -2 dt, :i; > 0 

© 200x Heung-No Lee 

IY+d✓.£�12 

dNo dy 
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Finally, the upper bound on BER over AWGN 

Make use of a bound Q( Jx + y) ::S: Q( fi)e-Yl2

Finally, the BER is 

P 1 df E INT Q( 2dJ·r�·e Es) ,lT( T ,v,z) I _ . _ 
b < -k,e ree S - 0 ,  � U . H. , 

No DZ vl1 =e-Es/N°,Z=l

70 
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Genie-Aid Lower Bound on BER over A WGN 

For a lower bound, let's assume an unrealistic scenario in 
which a magic genie provides the receiver two codewords 
from which the receiver makes a decision, one is the actual 
transmitted codeword and the other a codeword with drree
distance away from it 

p > lp b - k dfree 

71 
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Tables of Good Conv. Codes 
[Moon506] 

The program f inddfree finds duce for a given set of connection coefficie.nts. It has 
been used to check these results. (Currently implemented only for k = l codes.) 

R = 1/2 {251, 197] ""'"n� 1/3 [251, 197) 
L g(l) gl2) drree L g(l) gt2) g<3) 
3 5 7 5 3 5 7 7 
4 64 74 6 4 54 64 74 
5 46 72 7 5 52 66 76 
6 65 57 8 6 47 53 75 
7 554 744 1() 7 554 624 764 
8 712 476 10 8 452 662 756 
9 561 753 12 9 557 663 711 
10 4734 6624 12 10 4474 5724 7154 
11 4762 7542 14 11 4726 5562 6372 
12 4335 5723 15 12 4767 5723 6265 

13 42554 77304 16 l3 42554 43364 77304 
14 43572 56246 16 14 43512 73542 76266 
15 56721 61713 18 
16 447254 627324 19 
17 716502 514576 20 

© 200x Heung-No Lee 

Tables of Good Conv. Codes 
[Moon507] 

R = 2/3 [254, 172] 

R = 1/4 [251,197] 
L gOl gf2) i3) gl4) dfree 

3 5 7 7 7 10 
4 54 64 64 74 13 
5 52 56 66 76 16 
6 53 67 71 75 18 
7 564 564 634 714 20 
8 472 572 626 736 22 
9 463 535 733 745 24 
10 4474 5724 7154 7254 27 
11 4656 4726 5562 6372 29 
12 4767 5723 6265 7455 32 
13 44624 52374 66754 73534 33 
14 42226 46372 73256 73276 36 

g(l,1) 

L \) 
gC2, 1) 

2 2 6 
2 

3 3 5 

1 
3 4 7 

2 
4 5 60 

14 
4 6 64 

30 
5 7 60 

16 
5 8 64 

26 
6 9 52 

05 
6 10 63 

32 

© 200x Heung-No Lee 

dtree 
8 
10 
12 
13 
15 
16 
18 
20 
22 
24 
24 

26 

72 

giLZl g0,3) 
g<2,2) gC2,3) drree
2 6 3 
4 8 
2 6 4 
4 7 

l 4 5 
5 7 
30 70 6 
40 74 
30 64 7 
64 74 
34 54 8 
46 74 
12 52 8 
66 44 
06 74 9 
70 53 
15 46 10 
65 61 

-



Tables of Good Conv. Codes 
[Moon507) 

R = 3/4 [254, 172] 
g<l.l> gll.2) g(l.3) g(L4) 
g<2, l ) g(2,2) g(2,3) g(2,4) 

L V 
y(3,l) g(3,2) g(3,3) g<3, 4) dtree 

2 3 4 4 4 4 4 
0 6 2 4 

0 2 5 5 

i 3 5 6 2 2 6 5 

1 6 0 7 
0 2 5 5 

3 6 6 0 7 6 
3 4 1 6 

2 3 7 4 
4 8 70 30 20 40 7 

14 50 00 54 

04 10 74 40 
4 9 40 14 34 60 8 

04 64 20 70 
34 00 60 64 

Table 122 presents a comparison of drree for systematic and nonsystematic codes (with 
polynomial generators), showing that nonsystematic codes have generally better distance 74 
ffel�iet,�g5lill� even more pronounced for longer constraint lengths. 

Other Subjects on Convolutional Codes 

Punctured Convolutional Codes 

Suboptimal Decoding Algorithms 

Malgorithm 

Talgorithm 

Pano algorithm 

© 200x Heung-No Lee 
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Summary 

Convolutional codes have been one of the very successful 
codes. 

MLSD decoder has been available since Viterbi[67]. 

Large dfree codes have been found and tabulated. 

!* Concatenation of Reed Solomon code and Convolutional 
code [Fomey's dissertation 1965] 

- Voyager [ 1977]

Still used in many communications systems 

- Cell phones, space crafts, telecom/broadcasting systems

They are also used as a component in Trellis Codes, Turbo 
Codes, LDPC Codes, ... 

© 200x Heung-No Lee 

HW#5 

#1. (Moon 12.6, 12.7, 12.12, 12.23) 

#2. Draw the rate ½ recursive convolution encoder defined by G(D) = [ 1 
(1 +D+D2+D3)/(l +D+D3)], and obtain its state diagram

76 

#3. Consider the rate½ feedforward convolutional encoder given in the lecture, 
and assume the soft decoding channel model defined in the lecture - y = x + 
n, where x=2c-l and n is AWGN with E(nTn) being a diagonal matrix. 
Suppose y = (0.9 0.5, 0.2 0.1, 0.2 0.3, 0.2 0.1, -1.0 0.1, 0.9--0.2). Use the 
soft-decoding Viterbi Algorithm on the trellis, and find the maximum 
likelihood codeword. Compare your result with the one obtained using hard 
decision decoding metric in the lecture. 

77 
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HW#5 

#4. Consider a rate ½ feedforward convolutional encoder defined by 

G(D)=[l +D+D3 1 +D+D2+D3]. 

Obtain its state diagram. 

- Draw a completed trellis-section that defines the the encoder.

- Find the free minimum distance by running Viterbi algorithm on your trellis. (Hint:

Start with a single path that departs from the all-zero path. Use the procedure-­

determining d
free with VA-described in the lecture. Show your working of VA on

the trellis, as was given in lecture.

- Based on your results, determine the traceback depth

#5. Calculate the union bounds for upper and lower bounds of the rate½ 

encoder, G(D)=[l +D+D2 1 +D2], whose transfer function was obtained in

Lecture. Obtain performance curve graphs for soft- and hard-decision bounds. 

Compare them with the uncoded case. 

78 
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Trellis Codes 

Ref: Ungerboeck's 1982 paper 

Fall-02 University of Pittsburgh 

Gottfried U ngerboeck 
[Wiki] 

Born 15 March 1940 

Austrian Communications Engineer. 

�" Ungerboeck received an electrical engineering degree 

(with emphasis on telecommunications) from Vienna 

University of Technology in 1964, and a Ph.D. from the 

Swiss Federal Institute of Technology, Zurich, in 1970. 

He joined IBM Austria as a systems engineer in 1965, and 

the IBM Zurich Research Laboratory in 1967. 

Ungerboeckjoined Broadcom in 1998 as Technical 

Director for Communication Systems Research. 
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Channel Coding with Modulation (Trellis Codes) 

What was proposed? 

- New coding technique to improve detection performance without

increasing the bandwidth or sacrificing the data rate.

- Joint channel coding and modulation.

How? 

- Design convolutional (trellis) codes which increase the free

Euclidean distance, instead of increasing the free Hamming

distance.

Benefits? 

- Achieves coding gain of3-4 dB with simple codes for 8 PSK and

16 QAM modulations.

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

A Little Bit of Review on Modulation Theory 

(From EE 1473) 

BPSK system 

1 I O I 

3 

Dec 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 4 
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QAM signals 
(QASK in Ungerboeck) 

cos and sin are orthogonal to each other. Thus, two 

independent channels 

1 1 0 1 

lY-= o_ o_ 
T 

1 0 1 1 

I I o_ o_ 
T 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

0 

1-D/2-D Signal Constellation
sin 

BPSK sin 
Hamming = Euclidean 

16-QAM

cos 1 4bits/s;ymb 1 I 
-----

' 
----♦-

; i ' 

I i i 

--l ___ I ---i---

5 

2 bits/symbol 

00 10 

4ASK 

/Es cos 

01 

r--t---1 cos 

+- _J_ 
For multi-level signals, Hamming =I:- Euclidean in general 
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How to provide room for redundancy? 

Increase the bandwidth 

3bits/sec Information 

bit rate Rate 1/3 code ,___ ____ ..... 

of 1 bits/sec 

Or, decrease the data rate 

Information 

btt rate Rate 1/3 code 

of 1/3 bits/sec 

©2002 Heung-no Lee Fall-02 

1 bits/sec 

University of Pittsburgh 

Or, use Trellis Codes 

1 sec 

Trellis codes increase the size of signal constellation to 

create room for redundancy 

- Example) QPSK ⇒ 8 PSK

7 

8PSK 

3 bits/sec 

Anything that we are loosing? 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 8 



dmin is smaller 

d
min 

is critical in determining the symbol error probability 

(or BER) for uncoded transmission (why?) 

For a bigger signal set with equal average symbol energy, 

d
min 

should be smaller. 

Thus, in order for Trellis code to work, the benefit from 

coding should surpass the loss of having smaller d
min 

= d' 

d' = ffs · 2sin(n/8) 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Design Criteria 

Design a trellis structure that maximizes the free Euclidean distance dfree 

- For convolutional codes, codes which maximize the Hamming dfree were desired
Ungerboeck noticed what ultimately matters is the Euclidean dfree of 
transmitted symbol sequences {xj }, because they determines the detection 
performance 

Minimum Free 
Hamming distance was 
maximized for 
convolution codes 

©2002 Heung-no Lee Fall-02 

0 "'------"----
But, actually the minimum free 
Euclidean distance should be 
maximized (Ungerboeck's Design 
Criterion) 

University of Pittsburgh 
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Coded Transmission vs. Uncoded 

Signal constellation { a, b, c, d} 
Uncoded transmission 
- Transmitted sequence: a b  c a d  b c d a d  ...

- Symbols are chosen independently at each epoch

IfN = length of the sequence, 4N possible sequences

Minimum distance between transmitted sequences = minimum
distance in signal constellation

Coded transmission 
- Transmitted sequence: a b  d d c c b . . .,

- Symbols are chosen dependently upon previous symbols in the
sequence.

- IfN = length of the sequence, only 4N(k/n) possible sequences.

- Dependency means the increase in minimum distance between
sequences

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Thus, we could both loose and gain 

We get smaller d' by going for bigger constellation. 

But, we will eventually get bigger gain by having 
increased d

free 
of the trellis-coded transmitted sequence. 

'¥* Thus, the gain should be ( dfree)
2/( dmin)

2 . 

Note that for a fair comparison we should fix the 
transmitted powers of both uncoded and coded cases to be 
the same 
- Or use a compensation factor Es ' /Es where Es ' is the average

symbol energy with coding and Es is that without coding.

Thus, we can define an overall gain factor 

Y := (d2free
EJ/(d2

min
E/) 

II 
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How to Introduce Redundancy 

Create some dependency rule 
Current symbol is dependent upon a few past symbols in the 
sequence 

The few past symbols constitute a state 

moving window 

Current symbol is dependent upon past three 

and current input bits 

We can make use of trellis structure (or a state-diagram) 
for this. 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Signal Constellations 

o,--�-+�·-�� 
<i••AM 

�--7.os''·��<,,J-,--¾ 

11-M//, 

�-�·,'}•'sN�·��!(b4--'iiX:I 

••Bp,U•.!1 

•-P5� 8�P5K 

F,g. t Ct1ii1Jtt,i.i·tigJ1sai tEb corv.J,rler-cd in (hiJ p11pcr. (a') Onc-<litw:n*i,rnnl 
11\,,'ldolatio1,. ( b} 'r 'l','tJ~tlti rw.:srtsitvnai modulttti Ptl, 
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Constraint Channel Capacity 

Analysis of constraint channel coding capacity shows that 

we only need to double the size of signal constellation to 

get the most benefit 

QPSK⇒ 8PSK 

QPSK ⇒ 16 PSK, a significant diminishing return 

The input constraint: only symbols from a finite alphabet 

are allowed 

Thus, the capacity is bounded 

Constellation with 8 symbols ⇒ the maximum capacity is 3 bits 

per channel symbol 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Channel Capacity Analysis 

!Jig, 2. c;hannel capa:.c:ity <.:·:+ o! band.lirtih:ed A "'l(iN channcis with
,1.l:i.:,;:.cJ'etc--valucd input .and contin.u,(::<u.:;.--va.ltu:.d f_nitput, ,o1) 0.ne-.J.i.rnens?-t....,n.aJ 
1::U .. >C.>dulati.it:i:n, b) vfVi>·o-ditnt;?""nSi(,'�nal rnvdulation. 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 
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2 bits/T achievable 

around at SNR = I 0.0 dB 

If go for 8 PSK but send 

only 2 bits/sec, error free 

trans. is achievable at SNR 

= 5.9 dB 

By going for 

unconstrained, we could 

gain only 1.2 dB. Thus, 

most benefit is obtained 

from going for the twice 

bigger constellation 

16 



Before examples, let's consider 

❖ Take 4 PSK as reference uncoded system, and use 8 PSK for coded system
❖ The goal is to maximize the min. free ED of the resulting sequences
❖ Construct a state machine that gives out a symbol from 8 PSK constellation

(three coded bits) with two input bits at \l, single encoding step
❖ Note in this example, y=(dfree)2/2, since the energy per symbol is 1 for both

2 
dmin=2 

0.765 = 2sin(n/8) 
4 

l E, -
1 E/=1 

8 
6 
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Set Partitioning and Idea Behind 

l•oj
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·•Fig. 4. Parlitiooing of 8-PSK channel rip.1Js into � wi th �
bliminmmmwb�t distm10Ci(Ao < A1 < �1: B{I «;I};;;;;; 1), 
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Observation 

❖ As going deeper into the partitioning, the minimum distance within a

partition increases

When an early decision should be made, it would be desirable to make one 
within a deeper partition, as much as possible 
For example, conditioning upon an event that CO has occurred, we only 
need to make a decision between the most separated signal points O and 4 
whose distance is 2.0 

Now, what about the the likelihood of occurrence of a subset Ci?

- These can be assigned to states in trellis such that we can deal with the
sequence of partitioned subsets Cl CO C2 C3 ... , instead of symbols

The more the number of states is, the larger free distance but the more 

difficult in decoding 

So, let's start with a small trellis-state example 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

1 Trellis State 

With one state, we cannot afford to create a coded 

sequence 

At every trellis-section we have four merged paths, and thus, we 

must make four decisions-which is the same for uncoded 4 PSK 

modulation 

-0 tree '4La PSI', • , llll4,

f'dtl � 2 Oidrrei!/2.:rl

19 
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2 Trellis States 

❖ With 2 states, some coding benefit can be achieved, but parallel transitions are required

- Consider the first state, we need to make four transitions thus need four signals-say 0,4,2,6

- Assign the maximally separated symbols on parallel transitions, such as 0-4, 2-6, 1-5 and 3-7

- Similarly for the second state, use signals 1,5,3, 7 (Entropy---use signals equally often) 

❖ ( clrre.)2= d2(0,2)+d2(0, I )=2.0+(0. 765)A2=2.586
�}4 

y= (drree)
2/2.0 = 2.586/2.0 = 1.293 1.1 dB SNR gain 

J � i' 
dtr- • 6., + A� • Vlll�oll 

0 

(1Jl dB OAIN OVal: 4 � P$10 , 

Pr tel 1!2:.Q ldt1'11ie/2,sl 
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4 Trellis States 

(drreef = d
2
(0,4) = 4.0 

y = 4.0/2.0 ⇒ 3.0 dB SNR gain 

Parallel transition was choice, why it was used here? 

4 ffllU.11 STATES 

co C-2 

nn 
Ct C3 

'(?fl 
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11,,. ti! A::1 • a,ooo

◄3.0 dB G!A�N OVER 4 � PSK>.

Pt lt� 11,Qhi1re,e
/hl

University of Pittsburgh 
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3 flftl:.LLIS fHAfU 

{) 4 2 6 
1 S :) 7 
4 0 $ 2 
5 1 7 3 
2 6 0 4 
3 7 t 5 
6240 
1 3 S 1 

8 Trellis States 

(3.$ dB GIHN OVEJI 4 �J>SK.), 

Pf {11) l: :l .0 !d frel!> /2«}, 

• ( dfree)
2=d2(0,6)+d2(0, 7)+d2(0,6) =2+(0. 765)2+2=4.568

• y = 4.856/2 = 2.293 

©2002 Heung-no Lee Fall-02 

⇒ 3.6 dB SNR gain

University of Pittsburgh 

16 Trellis States 

0426 
t 5 3 7 
4 0 i ? 
$ l 1 3 
2 6 b 4 
3 't 1 5 
6 2 4 0 
7 3-$ 1 
4062 
5 1 1 :I 
lll 4 2 6 
1 5 3 7 
6 2 4 {I 
? J 5 1 
2 a o 4 
J 7 1 5 

0 

() 

(4.1 dB GAIN OliiER 4 • l>SKL 

l"rt11) t l:!?")OM1te11Fh} 

Fig. 7. Coded S-PSK modulation, 2 bit;T. 
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8 Trellis States 
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16 Trellis States 

16 TRELLtS !HAUS 

(142& 
1 5 3 7 
4 0 6 2 
5- t 1 3
2&i'H 
3 7 1 '5 
6240 
, a i; 1 
4 0 t, 2 
5 1 '.I' 3 
0426 
! 5- 3 7
6240 
7 3 5 t 
2604
3 7 1 5, 

di,,e9 =!•� +A�, d,� .. 11t " 2.2'74 

(U dB GAJti tl\lEl'I 4·PSi0. 
Pr(eh !3?'!0!4;rr;r;/2�} 

Fig. 7. Cooed S-PSK modulation, 2 bit;T. 
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Dominant Factors in Determining Free Distance 

"Parallel transitions" 

"adjacent transitions", 

(drree)
2 = d2(a,b) + ... + d2(c,d) 

C 

• • •

©2002 Heung-no Lee Fall·02 University of Pittsburgh 
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Ungerboeck' s Heuristic Rules 

For a given number of states, we are looking for a trellis 

which gives maximum free Euclidean distance 

Rule#l: Signals are used equally often 

Rule#2: Parallel transitions are assigned to the members of 
the same partition 

Rule #3: Adjacent transitions are assigned to the members 
of the next larger partition 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 29 

How Far Can We Take This? 

Partitioning one dimensional signal sets results in 

minimum subset distances d
j
+l = 2 d

j
. 

Partitioning two dimensional signal sets results in 

minimum subset distances d
j
+l = sqrt(2) d

j 
. 

Partitioning a large signal set, after a few partitions, gives a 

minimum subset distance that exceeds the free ED that one 
can ever expect. 

It is sufficient to partition only two or three times. 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 30 



Codes for 8 PSK Modulation 

'tAllLEU 

Coi1.JJ$ w.1 8--PSK Moo
r

n.<\'nor-: 

As complexity increases ( as 

the number of trellis states 

increases), the coding gain is 

larger, but with a limit. 

=� "" " w�·····---

For example, trellis code 

with the 27 states, the gain 

factor is 5.0 dB; with 29

states, it's 5.7 dB. 

- Recall the capacity results

©2002 Heung-no Lee Fall-02 

tf.i.!]!" l, 

\/�!:'£K} 11 li. t.'(,;J;rsr..i "hh\\�/.JL 

,1rnrt%} � ;jJ t11W�P" i 

�Se�rch not cootpktcrL 
/.}Na- impro•,;m1t�l iIDt&ne-d" 

University of Pittsburgh 

Obtaining an Encoder From the Trellis 

So far, we have been concerned only with the design of a trellis that 

gives maximum free ED 

Now, let's think about how to realize the trellis with a state machine 

First, we need a mapping rule that assigns coded bits to the channel 

signals 

We may use the natural mapping rule, such that 0➔ (000), 1 ➔ (001),

2➔ (010), 3➔ (011), 4➔ (100), 5➔(101), 6➔ (110), 7➔(111), for 8 PSK

example 

Note that these are just a naming convention (different names can do the 

job as well.) 

Now, we can find the binary state machine (binary convolutional 

encoder) that does the job, 

- It takes some effort but is do-able.

©2002 Heung-no Lee Fall-02 University of Pittsburgh 
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Obtaining an Encoder From the Trellis (2) 

A state machine produces an output ( coded bits) due to a 

set of input bits (information bits) and the current state 

(memory), and jumps to a successor state. 

Let's use a convention like this 

- The four transitions from the top to bottom are due to input (00),

(01), (10), (11).

- The Ungerboeck's mapping (natural mapping) is used for naming

the 8 PSK signals.

Based on this, one could come up with a state transition 

table. 

- Let's take an example of the 4 trellis states code

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

4 Trellis State Example 

33 

Current Input Output Next 

m2 m1 xP>x<2> y
(2) 

y
(I) 

y
(O) m2 m1 

A Binary 
00 00 000 00 

00 0 1 100 00 

representation of the 4 00 1 0 010 0 1 

state Trellis Code 
00 1 1 110 0 1 

0 1 00 001 1 0 

4 TIIIUl:S STATES 0 1 0 l 101 1 0 

co ca 0 1 1 0 011 1 1 

nn 0 1 1 1 111 1 1 

�# 
1 0 00 010 00 

1 0 0 l 110 00 

1 0 1 0 000 0 1 
110 4 1 0 1 1 100 0 1 

31 t I 1 1 00 011 1 0 

1 1 0 1 111 1 0 

1 1 1 0 001 1 1 

1 1 1 1 101 1 1 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 34 



4 Trellis-States Example (2) 

First, give names to the trellis 
I just chose the natural

mapping for names of states 
and branches 

After constructing the table, 
look for governing relationships, 
from the current state and the 
input, to the output, and to the 
next state. 
Note the following can be 
obtained from the table 

y(2) = xC2) 

Input xOl becomes next state's 
m 1, and the current state's m 1 

becomes the next state's m2 
yOl = xOl + mz 
y(O) = ml 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Other Examples in the Paper 

) 

. 

. 

35 

Choose 

A signal � 
x(k +I) . 

In partition 0 ut 

Rc.i.i.b<:�1�frm iif S-PS.k antl �6--QASK {'.-rnJ.�;"$ by tr,l��m� of rnmim<U 
,.un�w�hHi-ot!:a11t!tcO(h.•rs 

) 
1 r 

--

Select --

. 
Rate k/(k+ I) 

Signal . Conv. encoder I) . 

Partition1------> 

No parallel transitions ⇒ no upper 
part (the selected partition has a 
single channel signal) 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 36 



Viterbi Algorithm 

❖ We already know how to perform Viterbi algorithm on trellis, except

how to handle the parallel transition.

On branches where you have parallel transitions, we first need to make

a pruning decision among the parallel transitions, and then make

another pruning decision among the paths merged

• 

©2002 Heung-no Lee Fall-02 

• 

Minl =min{lyk
- S0l

2
, h- S4l2}, 

Min2=min{1Yk - S2 l2, IYk - S612 } 

Make the final decision among 

the two paths, in favor of the 

path having the minimum 

metric, min{Minl, Min2} 

University of Pittsburgh 37 

4 Trellis-States Example (2) 

First, give names to each 
elements in the trellis 

- Natural mapping for states and
branches

After constructing the table, 
look for governing 
relationships, from the current 
state and input, to the output, 
and to the next state 

Note the following can be 
obtained from the table 

_ yC2) = xC2) 

- Input xOl becomes next state's
m 1 , and the current state's m

1 

becomes the next state's m
2 

- y(l) = x(l) + ill2 

- y(O) = ill1 

©2002 Heung-no Lee Fall-02 

y(2) 

y(O) 
'------

University of Pittsburgh 

Select 

a symbol 

within the 

partition 

Select 

a partition 

c, 
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4 Trellis-States Example (3) 

Current Input Output 
m2 m1 xO> yO) y(O) 

x(2) = y(2) does not make
any influence on the 

00 0 Co 
00 1 C2 

output of the 0 1 0 Cl 
convolutional encoder 0 1 1 C3 

Thus, a trellis can be 1 0 0 C2 
1 0 1 C 

obtained by excluding 
0 

1 1 0 C3 
the two 1 1 1 C1 

Co, C2 

C 1 , C3 

C2, Co 

C3, C 1 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Two Types of Distances 

❖ The minimum squared distance within the partition assigned to the
parallel transitions (the single signal error event)
- This is d2

paralleI = 4.0 for the example of four-states coded 8 PSK
The minimum free distance of sequences of partition sets
- The squared distances of any pair of partitions are d2(C0, C

1
)=d2(0,1)

=0.585, d2(C0, C2) = d2(0,2)=2.0, and d2(C0, C3) = 0.585
- d2

sequence = d2(C0, C2 )+d2(C0, C 1
)+d2(C0, C2) = 4.585 > 4.0 

d\ree = min { d\arelleJ, d2 sequence}=4.0

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Next 
m2 m1 

00 
0 1 
1 0 
1 1 

00 
0 I 
1 0 
I I 
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Other Examples in the Paper 

�-····.,AA" .. -·��-······•'.······- ... -� M4P!41& 

f---7:2:)��Sli�::::��r;·oai ···;;J x(m)

Choose 
. A signal 

x(k+l) . 

. 

In partition • •l

9•0,i:Sf; 

J=·
4;

:·r·_�
1
: 

�---rr.
¢ 

..... .... . 
vd ......... 

l� 

Pig. 9, Reoli.,.ti<>n or 8-l'SK and 16-QASK """"'' !ry n,c,ms of minimal 
ronvolulh:mal encoder<. 

x(k)

Select 
. 

Rate k/(k+ 1) 
Signal . Conv. encoder 

x(I) . 

Partition 

No parallel transitions ⇒ no top 

part (the selected partition has a 

single channel signal) 

• Example is the 8 state 8 PSK

code

©2002 Heung-no Lee Fall-02 University of Pittsburgh 41 

Another Way of Obtaining an Encoder, 

From the Trellis 

Obtain the generator polynomial G(D) directly from the 
trellis by using the fact that G(D) is simply a collection of 
impulse responses 

x(l)= 1 x(l>=O x(l>=O 

❖ Thus, G(D) = [l + D2 , D] for y(l) and y<0) respectively

©2002 Heung-no Lee Fall-02 University of Pittsburgh 42 
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BERforBPSK 

·· y 
k 

= sqrt(E
8
) x

k 
+ n

k
, where x

k 
E { -1, I} with equally likely

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

R
e 

= rate of the code 
= number of bits 

each baud carries 

43 

The Complementary Error Function vs. Q(x) 

MATLAB only defines the complementary error function 

erfc(x) 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 44 



BERfor4 PSK 

We can treat this system as having two independent BPSK 

systems, one on sine and the other on cosine carrier 

Thus, the BER for 4 PSK is exactly the same as that for 

BPSK system 

HW#6, Problem #3 is now solved 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 45 

Approximation of Uncoded Symbol Error Prob. P(e) 

P(e) 

❖ Where �in is the minimum ED of the constellation and

N
c1min is the average number of minimum distance events

per signal point

❖ Example: 16-QAM signal constellation

- Nc1min
= (4*2+8*3+4*4)/16 = 3

❖ Need to convert dmin in terms of average

energy of the signals for P( e) vs. SNR

©2002 Heung-no Lee Fall-02 University of Pittsburgh 46 



Performance Analysis (Approximation) of 

Trellis Code Over A WGN 

❖ At high SNR, the following approximations are good
For the node error probability

d2 E 

Pe� N(dfreP)Q( f;No s) 
❖ Where N ( dfree) is the number of sequences that are distance dfree from

the transmitted sequence.
❖ For the bit error probability

❖ Where bdfree is the total number of information bit errors in the
erroneous path with distance drree, m is the number of bits per trellis­
section, and Es is the average energy of signal

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Rayleigh Fading Channel 

Now consider TCM signals over the following channel 

TCM 

47 

The fading ai is a complex-valued Gaussian-real and

imaginary parts are zero mean, variance of y2 and mutually 
independent real valued Gaussian r.v.s 

Let r:= la;I, Rayleigh distributionj{r) := (r!y2)exp(-r2!2y2) 

❖ Note that y2/N
0 

is an average channel SNR

©2002 Heung-no Lee Fall-02 University of Pittsburgh 48 



An Error Event involving L branches 

Consider the following one-to-one mappings, starting from 
the input bit sequence 
u = (u 1 , u2 , .•. ) ➔ x=(x1 , x2, .•• ) ➔ Y = (Y 1 , Y2 , ••• )

!+ Now consider an error event in which u is the transmitted 
input bit sequence but the receiver makes a decision in 
favor ofu', which has corresponding x' and y'

By making an assumption that there are L different 
symbols between x and x', the squared Euclidean distance 
between the two sequences y and y' observed at the 
receiver 1s 
d2

E = lly-y'll2 = llaTx -aTx'll2 = Li=IL lail2 lxi -x/12

= Li=IL 
f

2 i f i ___ squared ED between two symbols in

� the i-th coordinate in difference 
©2002 Heung-no Lee Fall-02 University of Pittsburgh 49 

Pairwise Error Event 

dE = II y-y'I\ 

y 

0 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 50 



Pairwise Error Probability 

(the channel a is known) 

and Q(O) = 1/2 

Instantaneous SNR 

What only matters is the 

energy of the fading channel, 

when the channel is known. 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

Probability of Pairwise Error 

For high avg. SNR, P(e) � avg.SNRL 

Thus, we want to have a large L 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 
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Design Criteria for Trellis Code over Fading 

Channel 

L is called a effective length. It is the number of symbols 

that are different in a pair of sequences 

The first design criterion of Trellis Codes for fading 

channel is the maximization of the minimum effective 

code length L in the trellis 

- P( e) ~ SNR-L asymptotically

The secondary criterion is to maximize the product of the L 

distance terms 

- Spread the distances as evenly as possible among the L locations

©2002 Heung-no Lee Fall-02 University of Pittsburgh 53 

Developments of Trellis Codes 

Summary of good techniques is given in 

- Introduction to Trellis-Coded Modulation with Applications (1991)

by Ezio Biglieri, D. Divsalar, P. McLane, M.K. Simon.

- Multi-dimensional (Lattice) Trellis Codes

- Multiple Trellis Coded Modulation

❖ Extension of the Trellis Code idea to MIMO channels

- Space-Time Trellis Codes, by Tarokh, Calderbank, Seshadri, 1998.

©2002 Heung-no Lee Fall-02 University of Pittsburgh 54 



Summary 

Trellis codes provide coding gain without sacrificing the 

transmission rate nor the bandwidth. 

They are called Coded Modulation. 

- Channel coding and modulation are done in a joint manner

- Code design should be done in a way to increase the Euclidean

distance, rather than the Hamming distance, for A WGN case.

- But for fading channel, it's Hamming distance (minimum free

distance) again which is more desirable as diversity becomes more

important, rather than Euclidean distance.

Trellis Codes are very useful for spectrum limited 

applications such as terrestrial communications, personal 

area networks, wireless LANs. 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 

HW set for Trellis Codes 

55 

Problem # 1: Design a rate-2 8 PSK four trellis-states code 

without any parallel transitions 

- Find the free ED of your code

- Compare it with that of the best 4 trellis states code

Problem #2: Reproduce the Channel Capacity results 

(Fig.2 in Ungerboeck's paper) for m-ary PSK signals (m=2, 

4, 8, 16): (Submit the MATLAB program for this, along 

with your results) 

©2002 Heung-no Lee Fall-02 University of Pittsburgh 56 



Computer Simulation Assignment 

(use MATLAB) 

❖ Refer to Wicker pg. 386 or Fig. 16 ofUngerboeck's paper

❖ Simulate the uncoded 4 PSK system over the A WGN channel

Y
k 

= x
k 

+ n
k 

where {n
k
} is complex-valued white Gaussian noise process 

and x
k 

is the 4 PSK signals, {ei1tl4, ei3
1t14, ei51tl4, ei711/4}.

Use a gray mapping such as {(00), (01), (11), (10)} for the four signals 

Obtain the theoretical bit error probability vs. (E.,JNo) SNR curves 

Obtain bit error rates from simulation and compare them with the 
theoretical curve (Obtain at least 100 errors; for example for bit error rate 
of 10-3 you should at least generate 100*1000 bits) 

Simulate the 8 state 8 PSK Ungerboeck Trellis Codes for the purpose 

of generating BER curves, and compare them with the BER curves 

obtained from the uncoded 4 PSK system 

Use the Ungerboeck mapping for 8 PSK signals 

- Use the Viterbi algorithm for decoding

©2002 Heung-no Lee Fall-02 University of Pittsbnrgh 
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Review on Linear Code 

❖Galois-Field (p),
-A set with addition and multiplication operations
- Closure, Associativity, Identity, Inverses & Commutativity

• With mult. only non-zero elements

❖ Vector space with pn elements on GF(p)
-Cardinality of a code with rate R, 1e1 = qR n 

❖G, generator matrix [nR x n] of a code
-Row-space of G is space of the code

❖H, parity check matrix [n(l-R) x n]
-n(l-R) rows, [n x I], ofH span the null space ofthe code

•!<>GHT = 0 
·❖ Results in n(l-R) number oflinear homogeneous parity check equations.
❖ rHr = (c+e)HT = eHT = s

-Non-zeros indicates "problem"

Fall-04 University of Pittsburgh 

Gallager' s Thesis (' 63) 

❖ (n,j, k) low density parity check code.

Parity check matrix H [ n( 1-R) x n] of the code
- j, number of l's in each column
- k, number of l's in each row
- R = l-j/k

Min. distance of typical (n, j, k) code for j 2". 3,
- increases linearly with n for fixedj & k (Pg. 7; Ch. 2)

❖ Upper bound on prob. of error for BSC with ML Decoding (Ch. 3)
- P(e) exponentially-decaying func. of block length n, when R << I

Practical decoding (Ch. 4)
- Simple or probabilistic

Generalization (Ch. 5)

Fall-04 University of Pittsburgh 
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Parity Check Matrix on Bipartite Graph 

1 0 0 1 0 0 1 0 0 

0 1 0 0 I 0 0 1 0 

0 0 1 0 0 I 0 0 1 
X1 

{:j 1 0 0 0 1 0 0 0 1 
X2 

0 I 0 0 0 1 1 0 0 

0 0 I 1 0 0 0 1 0 
X9 

Fall-04 University of Pittsburgh 

Illustration of Decoding Concept with 

Simple Hard-Decision Decoder 

Works only for BSC 

- r is binary sequence

Compute all parity checks 

Change the digit involved in more than a fixed number of 
unsatisfied parity checks 

Re-compute all parity checks 

Repeat 

Fall-04 University of Pittsburgh 
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Simple Decoding Example G=2, k=3) 

❖ Suppose we have
r=[l O O O O O O O O]

❖ Violates check nodes
(equations) 1 and 4

❖ Check nodes 1 and 4
send back to error­
pattern nodes an
instruction to correct

Error-node 1 corrects it,
having two instructions

❖ Error-nodes 4, 5, 7 & 9
do not correct, since it
has only one instruction
to correct

Fall-04 University of Pittsburgh 

Probabilistic Decoding 

Bayes' Theorem on The Total Probability 

Tot�l Prohabilihr· Tf A={ A. A .I\ 1. 1C' a na..t1t1r\1'l n.f' � 
....,�--"- ..._ _._ ...., 

...__.__._.,.J • ..a.. .L .L .L .a..1, .L ... 2, • • •, .l 1.fi J 
.l.iJ l' 

J.\..1.1..1.V.1..1. V..1_ U 

and B is an arbitrary event 

Pr{B} = Ln
i=l

Pr{B n AJ = Ln
i=lPr{B I AJ Pr{AJ 

Bayes' Theorem: We know 

Pr{ Ai JB} 
= Pr{ Ai n B}

Pr{B} 

The aposteriori probability is then given by 

D 

6 

Pr(AilB) 
= Pr(B/AJPr(Ai) 

"i::__ Pr(BJA-)Pr(A) r L,1-l 1 1 

Fall-04 

. . 1 
apostenon prior 
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Gallager' s Decoding Principle 

❖ A posteriori probability: Pr(xd = 1 IY, S)
- Event S: All participating check equations are satisfied.
- Event {y}: Observed output of the channel.

❖• First, let us think about a codeword in a sub-code.
- A sub-code is a collection of codewords which satisfy all the j parity

checks.
Each of thej parity check equations involves (k-1) bit nodes.

- Note a codeword in this sub-code is comprised ofj*(k-1)+1 bit nodes.
A codeword c = (xd, x,7i, XJ2, ... , :1::t_1, · · ·, ::i11 , xt, • • •, x3.ik 1) 

k-1 terms k-1 terms

Gallager's Decoding (2) 

·❖ Assumption 1: Digits xd, xd1, ... are independent

...
. . 
.... 

❖ Assumption 2: y=(yd, y 1 , y2, ... , Yj(k-1)) and independent
channel transition probability

Px(Y) = Pr(Yd)P.r(Y1) · · · Pr(Yj(k-1)) 

Fall-04 University of Pittsburgh 
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Gallager's Lemma 4-1 

•:• Assume m-independent binary digits (x1 , x2, ••• , xm
) 

❖ Assume (p 1 , p2, •.. , Pm) available, denoting pi
=Pr{x; = 1}

❖ Then we have p ( = ffi ffi 1) r x1 w x2 w ... w Xm = 

= Pr{even number of l's} 
_ 1 + n,� 1 c1 - 2pt) 

2 

❖ Hint: consider the two following functions, add/subtract
for even/odd number of 1 's, then select t = 1
TTY-:- 1 ((1-pl)±pl t) = TTt=1(l-pz)±I:}n 1Pl I1Ttil­
Pj)t + ···±Lr 1 (1 - Pt) TIJt=l PJ + nr 1 Pl

Fall-04 University of Pittsburgh 

Ex) m even 
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Gallager's Decoding Theorem 4.1 

❖ Bayes Theorem:

Pr(:r,d = ljy, S) - Pr(;r,d = 1, y, S)

p(y,S) 
Pr(Slxd = l,y) p(xd = 1,y) 

p(y,S) 
Pr(Slxd = 1,y) Pr(xd = lly) p(y)

p(y,S) 

❖ The ratio is of our interest

Pr(xd = Ojy,S) _ Pr(Sja:d = O,y) Pr(xd = Ojy) 
Pr(xd = ljy, S) - Pr(Slxd = 1, y) Pr(xd = ljy) 

Fall-04 University of Pittsburgh 11 



Gallagar' s Decoding 

Find the probability that the first parity check equation is

satisfied, given x6 = 0 and the channel output y,

assuming 
independence 

Pr(0 EB ,ct e XJ
2 

EB ... EB XJ
k
-1 = 0 l:cd = o. y)

Pi·(even l's in the rest (k - 1) bit-nodes I y) 
= Pr( all zero IY)+Pr( two l's IY)+·· 

Pr(;i:;-z
1 
= 0. :r;-z

2 
= 0 .... , ,rt_ 1 = 0 I y) +

P·r·(·1· 1 - 1 ·1· 1 - 1 .,. l - 0 I y) +"d1 - •"d2 - , ... ,.,·dk-1 - .. 
k-1

IT (1 - Pr(x;-z
1 
= l I y)) +

1=1 

2 k-1 � 
IT Pr(:rJ

1 
= l I y) IT (1 - Pr(:i·J

1 
= 1 ly)) + · · · 

l=l /=3 

1 + ITf�i(l - 2z,11) 
2 

Fall-04 University of Pittsburgh 

Gallager's Decoding Theorem 4.1 

12 

Now, find the probability that the first parity check

equation is satisfied, given xd = 1 and the channel output y,

Pr(l EB :r;-z
1 

Ell ,1:;-z
2 

EB ... EB ,1:t_1 = 0 l1;d = 1, y)

Again, assuming 
independence 

� Showing only a 
single term 

of the same kind 

Pr(odd l's in the rest (k - 1) bit-nodes I y) 
= Pr( single 1 I y) + Pr( three l's I y) + · · ·

Pr(:rJ
1 
= l.:c,� = 0, ... , xJ

k
-l = 0 I y) + · · 

Pr(x(j
1 
= 1, 1:;-z

2 
= L ,r;-z

3 
= 1, ... , :c}

k
-l = 0 I y) + · · 

k-l
Pr(;1:!-ii = 11 y) IT (1 - Pr(;i:}

1 
= 1 I y)) + · · ·

/=2 

3 k- l � 
IT Pr(x,]

1 
= 11 y) IT (1 - Pr(a:;i

1 
= 1 ly)) + · · ·

l=l 1=4 

1 - nf;;;;;tc1 - 2p11) 
2 

Nje the negative sign
Fall-04 University of Pittsburgh 13 



Gallager' s Decoding Theorem 4.1 

Let S
i 
: = { the i-th check is satisfied} 

Then, S = S 1 and S2 and ... and S1
Thus, we have 

Similarly, we have 

Fall-04 

II I'r(S;/:i:d = 0,y) 
i=l 

J 1 +n"-1c1 2 )
- II l=l - Pit 

i=l 
2 

University of Pittsburgh 

The Decoding Theorem 4 .1 

Now summarizing the decoding theorem, we have the 
equation (4.1) 

Pr(x,z = Oly, S) 1 - Pr(1:r1 = 11 y) JJ 1 + nf:=;(1 2p.,1)
Pr(:1:r1 = lly, S) Pr(xd = 11 y) 

i=l 1 - J!f;;:f(l - 2p.il) 
Pd:= 

....... �-=--E<i rr �-tr::rf;t< 1 
-

2JJ;r) 
Pd i=l 1 - Tit;;;}(l - 2P;1) 

Note P
d 

and Pn, i=l, 2, ... ,j, 1 = 1, 2, ... , k-1 are posterior 
probabilities of having digit "l" at the particular location 
given the complete output y 

Pd ·- Pr(:rc1 = l I y)

Pil 

Fall-04 University of Pittsburgh 
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Iterative Decoding 

❖ We can consider the sub-code scenario for each of the

j*(k-1) first tier bit nodes

❖ Now, we have (j - 1) check equations for each bit node

(why?)

- Each check equation checks (k- 1) bit nodes

Fall-04 University of Pittsbnrgh 

Iterative Decoding (2) 

❖ Second or higher tier probability calculation

Pr(a:d1 
= Oly, S) · = 1 - Pr(;r,�

l 
= 11 y) II 1 + rrf,;;;}(1 - 2p;1)

Pr(XJ
1 
= ll y) i=2 1 - I1f,;;;{(l - 2p;i) 

l'll := 

= 
1 - P11 II 1 + nt,;;;t<1 - 2pu) 

Pu i=2 1 - Ilf,;;;£(1 - 2pu) 

16 

j - 1 terms 

}�·•�i:!::::::·�···· ····· � E9 ' � 
&·��·;�:-... ;··. •·····::::::;:::::. :::::··i:::.�:·.::i:····;·····•··················�-,,,,.

Fall-04 University of Pittsbnrgh 17 



Iterative Decoding (3) 

❖ Assume the probability calculation is started off from the
last tier of the tree, and coming down toward the first tier
of the tree

❖ After a number of second tier calculations -(j-1) check
equations and (k-1) bit nodes for each check-we assume
we are close to the origin of the tree, and make the first tier
calculation -j check equations with ( k-1) bit nodes in
each (given by Theorem 4.1)

Fall-04 University of Pittsburgh 18 

The Start of Iteration 

❖ Yk = #s(2xk-1) + n
k
, where nk 

is AWGN for k=l, 2, ... , N
❖ Obtain the likelihood probability p(yk I xk).
❖ This log likelihood probability is used to start the iteration.

Fall-04 University of Pittsburgh 19 



tanh and tanh- 1 function 

------------------- ----;;,----

N ( r) e·1'-l
ote tanh 2 = e"+l

Note 

tanh- 1 (x)
1 l+x 
-log--
2 . 1- X 

. 1 1 + l;rl 
.ngn(;x: )-log 

I 2 1 - :cl 

Fall-04 University of Pittsburgh 

-1

Hyperbolic Tangent, tanh 

(1- 2p.J 
1 - A - Pi 
1 - Pi+ P·i 
1 - ___fi_

1-p.;

1 + Jli 1-J)·,.
log_!Zi_ � 

1 - e 1-Pi

lo _!Zi_ 
1 + e 91-Pi 

LR(JJi) 
-tanh(--)

2 

Fall-04 University of Pittsburgh 

X 

20 

21 



Log Ratio Algorithm 

❖· Take the log of the ratio of the posteriors

( I ) j nk-1 ( 1 2 ) Pr ;i_:d = 1 Y, S l Pd + � l 1 - l=l - Pit log----- = og--· L, og-��---
Pr(:ra = Ojy, S) 1 - Pd i=l 1 + Tif�}(l - 2Pit) 

❖ Using tanh(½) = ::+i, the summand of the second term
is I"\._ 

l l-(-l)k- 1 nf..=ttanh(�) - l 1+(-l) k nf..=ttanh(�)
og l+(-l)k-1 nt;:;t tanh( LR�il)) - ,og 1-(-l)k Il�i tanh(�)

❖ Making use of tanh-1(x) = ½togl�; , it becomes

L!=l 2 tanh-1((-l) k TI7�i tanh( LR�P;1)))
Making use of 

_ Lj (-l)k 2 t I -lcnk-1 t , l ( LR(pi!l)) tanh- 1 being
- i=l ,an i l=l ,an 1, 2 odd function 

Fall-04 University orPittsburgh 

Product of Real Numbers 

❖ ab = sign(a) sign(b) exp(log(jaj)) exp(log(jbl))

Fall-04 University of Pittsburgh 
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f(x) := - log(tanh(x/2)) =log�:,±t 

❖ Use the identity of product of real numbers to get rid of

product

i=l 

k-1 ( ) 
(-ll 2 tanh-1( II tanh( LR Vil ))

l=l 2 

j k-1 k-1 ILR(p· )I 
= L (-l)k [ II sign(LR(Pit))] 2 tanh-1[exp( L log(tanh( '1 ))]

i=l l=l 1=1 2 

j k-1 k-1 
= L [ II sign(LR(Pi1))] · r

1( L J(ILR(Pi1)I) 

-.,--------+-
i=l /� 1=1 

1\ 

Information generated 

by the i-th check node 
Log ratio: info. 

from bit nodes 

Fall-04 University of Pittsburgh 24 

f(x) 

•!• Symmetric wrt y=x 

y=x 

Fall-04 University of Pittsburgh 25 



Finally, the Log Ratio Algorithm 

❖ Note the ratio here is Pr(x= l)/Pr(x=O), which is the inverse

of the ratio used in Gallagar' s thesis

❖ With the following definitions

- LR(pd) := log-1!.L LR(p·z) := log-1!iL 
· 1-pd 1 ' 1-Pil 

•!• Theorem 4.1 becomes 

Fall-04 University of Pittsburgh 

Number of Edges in Bipartite Graph 

❖ There are n bit nodes and L check equations

- Then there are E=n*j = L * k edges

- The total number of messages flowing from bit to check, and also

from check to bit, is E

Fall-04 University of Pittsburgh 
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Let's Label the Edges 

❖ Starting from the left of the graph
- For the edges connecting bit-1 to check-I and check-4, let's name

them to be '11' and ' 14' respectively

- For the edges connecting bit-2 to check-2 and check-5, let's name
them to be '22' and '25' respectively

- And so on

❖:❖ Now, let's define qt,! the message from the bit-t to check-I
And, define rt,1 the message from the check-I to bit-t 

Fall-04 University of Pittsburgh 28 

Likelihoods as Input 

Yt 
= (2xt

- 1) + n
t
, where n

t is AWGN for t=l, 2, ... , n 
where n

t is .A{O, Nof(2E
s)) with E

s
=E

b 
*R 

Obtain the likelihood function p(y t lxt) 
❖ The log likelihoods are used to start the iteration

Let's denote the likelihood functions
- f/l) =p(y11Xi=l) and �(O) =p(y1lx1

=0)

The Log Ratio of Likelihood Probability is
LR(�) =log(f/1) /f/0))=( 4E/N0)Yt

Fall-04 University of Pittsburgh 29 



In the beginning, we have LLR( fk) 

LR(f2
) LR(f,) LR(f6) LR(f

8
} 

LR(f
1
) LR(f1) LR(f

5) LR(t;) LR(f9) 

The log likelihood ratios ( or { :t;{ 1)}) are the input to the 
message passing decoder, to start the iterative decoding 

Fall-04 University of Pittsburgh 

Until the last iteration 

Do the second tier calculation 

Each bit node generates} bit-to-check messages 

- Each bit-to-check message is generated by checkingj- l check

equations, excluding the check equation to which the message

flows

Each check node generates k check-to-bit messages 

30 

- Each check-to-bit message is generated by utilizing k-1 posteriors,

excluding the edge connecting to the bit node to which the

message flows

Fall-04 University of Pittsburgh 31 



Bit-to-Check Message qtz' 

LR(f
1
) LR(f

5
) LR(f7) 

,:,. The message to check node c3, 

- q6il):=Pr(x
6

=1IS
5,y) = Pr(x

6
=lly) Pr(S5 lx6

=1,y) = fil) r65(1) 

node 

- q65
(1):=Pr(x

6
=1IS

3
,y) = Pr(x

6
=lly) Pr(S, lx6

=1,y) = fil) r
6il)

❖ Similarly for q
6
i0) and q

65
(0)

❖ In terms oflog ratio, LR(q
63) = LR(f

6
)+LR(r

65
) and LR(q

65
) =

LR(f
6
)+LR(r

63
) 

Fall-04 University of Pittsburgh 

Log Ratio Bit-to-Check Messages LR(qt,z)

LR(f
3
) LR(f

5
) LR(f

7
) 

LR(q63) = LR(f6)+LR(r65)

LR(q65) = LR(f6)+LR(r63)

Fall-04 University of Pittsburgh 
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Check-to-Bit rtJ

�. 
><"". 

0 Q 

,-:• Check-to-Bit message is r
d3

(1 ):=Pr(S
3 
lxd

= I,y), d=3, 6, 9 
♦•♦ '!l•,, ll'"('�•,•nc> !·) '!):,. fl('•1j' .• i's r33(l) = 1-(1-2%3(1))(1-2q93(l))

• ,. • ,.. ,, .... •.hi
e,

;.;: .\ . I l • I, c 2 

❖ Tht: messag1: to bit node x
6 

is r63(1) = 1-(l-2q33(l�)C1-2993Cl))

♦ Th b' d . ( ) 1-(1-2q33(12)(1-2p63(l))•�• e message to It no e x
9 

IS r93 1 = -�� · --2-----.. ·-·---.. -

❖ Similarly for r
d
iO) := Pr(S3 lxd

=O,y), d=3, 6, 9
- For example, r33(0) = 1+(l-2<J63(0J)(l-2q93(0))

Fall-04 University of Pittsburgh 

Log Ratio Check-to-Bit Messages LR(ru) 

❖ g(x) := tanh(-x/2)
❖ The check-to-bit messages in log ratio

- LR(r33) = g-1[g(LR(q63)) · g(LR(q93))]
- LR(r63) = g-1[g(LR(q33)) · g(LR(q93))]
- LR(r93) = g-1[g(LR(q33)) - g(LR(q93))]

Fall-04 University of Pittsbnrgh 
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l 

At the last iteration 

LR(p2
) LR(p,) LR(p6

) LR(p8
) 

LR(p 1
) LR(pJ LR(p5

) LR(p7
) LR(p9

) 

Do the first tier calculation (Theorem 4.1) 

Pr(x6
=1IS3,S5,y) = Pr(x6

= lly) Pr(S3 lx6
=1,y) Pr(S5 lx6

=1,y) 

- pil) = fil) rdl) r65 (1)

- piO) = fiO) r6i0) r65 (0)

LR(p
6

) = LR(f
6
) + LR(r

63
) + LR(r

65
)

t 

Fall-04 University of Pittsburgh 

Parity Check Matrix on Bipartite Graph 

(n=9,j=2, k=3) example

36 

Ql(m,t): Row in a column 
1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

ali1 

123456789 

0 0 I 0 0 1 0 0 1 
x
, m=l 123123123 

} j I 0 0 0 1 0 0 0 I 
x

, m=2 456645564 
0 1 0 0 0 1 1 0 0 

0 0 1 1 0 0 0 1 0 
X9 

L the number of checks Q2(m, /): Column in a row 

Fall-04 

/ 123456 

m=l 123 123 
m=2 4 5 6 5 6 4 
m=3 7 8 9 9 7 8 

University of Pittsburgh 37 



Summary of Decoding (Log Ratio) 

(n,j, k) code with g(x) := tanh(-x/2)

❖ Initialize:

- LR(f1)=( 4E/N0)y1, 

- LR(rt1)=0, t=l, 2, ... , n and l=l,2, ... , k

Iteration: 

- Bit-to-Check messages: LR(qt,Q I(m,tJ), t=l,2, ... , n; m=I,2, ... ,j
LR( qt,Ql(m,t)) = LR(-f;) +Im'* m LR(rt,Ql(m ',1)) 

- Check-to-Bit messages: LR(rQ2(m,/J,J), l=l,2, ... ,L; m=I,2, ... , k

LR(rQ2(m,/),I) = g-l[IJm , * m g(LR(qQ2(m',1),J)]
Output: 

- LR(p1) = LR(-t;) + Im LR(r1,Ql(m, tl)
Decision: 

- if LR(pi) > 0 x
1 

= I ; else x
1 

= 0

Fall-04 University of Pittsburgh 

Summary of Decoding (Log Ratio) 
(n,j, k) code withfi:x) := -log(tanh(x/2)) = log[( ex + 1 )/( ex -1 )] 

Initialize: 

- LR(f1)=(4E/N0)Yi,
- LR(rt1)=0, t=l, 2, ... , n and l=l,2, ... , k

Iteration:

- Bit-to-Check messages: LR(qt,Q I (m,tJ), t=l,2, ... , n; m=I,2, ... ,}

LR( qt,Ql(m,t)) = LR(f1) +Im'* m LR(rt,Ql(m ·,1)) 
- Check-to-Bit messages: LR(rQ2(m,/J,I), l=I,2, ... ,L; m=I,2, ... , k

LR(rQ2(m,/),/) = nn' � m sgn(LR(qQ2(m',/),/)) X tp:m ' � m f(ILR(qQ2(m',l),i)I)] (-l)k 

Output: 

- LR(p1) = LR(fi) + Im LR(rt,Ql(m, t))
Decision: 

- if LR(p1) > 0 x
1 

= l ; else x1 = 0

Fall-04 University of Pittsburgh 
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Generation of the H matrix 

There are numerous ways to generate the H matrix 

◊:◊ Any solution that satisfies the two constraints will do the

job (Some bad choice will increase the code rate) 

1 , j number of ones in each column 

1 k number of ones in each row 

Fall-04 University of Pittsburgh 

Using s-random interleaver to generate 

the parity matrix H: (n, j=3, k=4) example 

Seq-2 
��

1 23 4 5 67 8 ©@� //r\ 
; I / 

0000 

We know there are E=n*j = L * k edges 
- Sequence each set of edges

E -1 E 

E-2 E-l E

�

- Find a random interleaved ( e.g. s-random interleaver: s>k)
sequence 1t

- 1t(Seq-1)=(64E-1 ... )

- Make the connections

Fall-04 University of Pittsburgh 
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Generate the H matrix directly 

Randomly select the j row positions to place one in each 

column, while making sure that the number of ones in that 

particular row is not greater than k 

Equivalently, we can construct the Ql(m,t) matrix or 

Q2(m,l) matrix 

Fall-04 University of Pittsburgh 

Example with (n=9, j=2, k=3) 

Let's generate Ql(m,t) matrix 

- Rows= {l,2,3,4,5,6}

At t= 1, randomly select two numbers from Rows

- Suppose the two were 2, 5

At t=2, select two numbers again from Rows

- Suppose they were 2, 4

At t=3, select two numbers again from Rows

- Suppose it were 2, 3

- Remove '2' from Rows

At t=4, select two numbers from Rows-{2} 

And so on 

Fall-04 University of Pittsburgh 
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Another Way 

Refer to Gallagar' s Thesis pg. 13 or his paper 

Fall-04 University of Pittsburgh 44 

Gaussian Elimination on H 

Once H is found, perform Gaussian Elimination on H and 
find a systematic form of H, H

s

- Keep track of the column exchanges made

Do the same set of column exchanges on H and obtain new 
H matrix Hnew 

Find G
s 
using the relationship G

s
H? = 0 

Use G
s 
in encoding the data 

Design the message passing decoder according to Hnew 
(Why?) 

- GsHnewT =O

Fall-04 University of Pittsburgh 45 



u 

Finally, we have 

2(x-1) 
y MessagePassing 

Decoder with Hnew 

Noise is A WGN with mean O and variance N
o
f (2E

s
) 

Fall-04 University of Pittsburgh 46 

Results of the rate ½ LDPC code, N=4096 

Ral'a! 1t'2 LDPC code w:11 .A.\'VGN ::.ftmnel 

Try to obtain BER=I0-5 

Fall-04 University of Pittsbmgh 47 



Turbo Codes 

©2002 Heung-No Lee 

Agenda 

The Turbo Codes 

Forward-Backward Algorithm (BCJR algorithm) 

Soft Input Soft Output (SISO) Module 

Log Domain Algorithm 

- The Max Operation

©2002 Heung-No Lee 
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Papers for turbo codes for class notes 

❖ Bahl, Cocke, Jelinek, and Raviv, "Optimal decoding oflinear codes for

minimizing symbol error rate," IT, Mar. 1974.

❖ Berrou, Glavieux, and Thitimajshima, "

," ICC, 1993. 

❖ Hagenauer, "Iterative decoding of binary block and convolutional

codes," IT, Mar. I 996.

❖ Benedetto and Montorsi, "Unveiling turbo codes: some results on

parallel concatenated coding schemes," IT, Mar. 1996.

❖ Benedetto and Montorsi, "Design of parallel concatenated

convolutional codes," TC, May 1996.

·❖ Benedetto, Divsalar, Montorsi and Pollara, "Serial concatenation of

interleaved codes: performance analysis, design, and iterative 

decoding," IT, May, 1998. 

©2002 Heung-No Lee 

Papers for Gallager codes for class 

❖ Gallager' s Thesis

Richardson and Urbanke, "The capacity oflow-density parity-check

codes under message-passing decoding," TT, Feb. 2001.

❖· Richardson, Shokrollahi, and Urbanke, "Design of capacity

approaching LDPC codes," IT, Feb. 2001.

❖· S.Y. Chung, T.J. Richardson, and R. Urbanke, "Analysis ofSum­

Pruuud Decoding of Low-Density Parity-Check codes using a

Gaussian Approximation," IEEE Trans. on IT, Feb. 2001. 

- Communication Letter: LDPC code 0.0045 dB of the Shannon limit.

3 

❖ Brink, S. Ten, "Convergence of iterative decoding," Electronics Letters,

1999.

4 
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Term Project Idea 

❖ Simulation
A turbo transceiver system over A WGN channels or (MIMO) fading channels. 

Code design using the EXIT chart or Density Evolution. 

Papers helpful for this 
Brink, Kramer, Ashikmin, "Design oflow-density parity-check codes for modualtion and 
detection," TC, April, 2004. 

❖ Some papers that are interesting for a summary presentation:
Chen, Xu, Djurdjevic and Lin, "Near-Shannon-Limit Quasi-Cyclic LDPC codes,'' 
TC, July, 2004. 

Djurdjevic, Xu, Abdel-Ghaffar, Lin, "A class ofLDPC codes constructed based on 
Reed-Solomon codes with two information symbols," CL, July, 2003. 

Soft decision decoding of Reed-Solomon codes 

©2002 Heung-No Lee 

Guruswami and Sudan, "Improved decoding of Reed-Solomon and Algebraic-Geometry 
codes," IT, Sept., 1999. 

Koetter's 2003 paper (Late UIUC prof) 

Narayanan (Texas A&M) 

The Original Turbo Codes 

❖ Berrou, Glavieux, and Thitimajshima, "Near Shannon limit error correcting

coding and decoding: Turbo Codes," ICC 1993.

��-.--!I yk 

ffflcuntw 

T -. ., 
t:-oMtn,2�1 

5 

flgc. 2 R.wt\U..m Systt.matk: codtJ& 
"Mlh patru\-91 �at1m'.lt\oric, The notation given here will not be used further in 

my lecture notes 

6 
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New Ingredients 

New encoder -randomness reinforced with the use of 

random interleaver 

Two state machines combined with a random interleaver 

- The use of random interleaver dramatically increases the effective

constraint length of the overall code

New decoder- iterative decoding by exchanging soft­

metric among a number of state machines 

Local optimization using a Maximum A Posteriori (MAP) 

algorithm 

Exchange the local optimization results among constituent 

decoders across de-interleavers-iterative decoding 

©2002 Heung-No Lee 

Dramatic Performance Results 

•❖ The interleaver size was

65536. 

❖ Shannon Limit on rate ½

code is 0.187 dB (0 dB if

unconstrained).

"+* The BER curves obtained 

show P
b 
= 10-5 was achieved

at 0.7 dB, which is only about 

0.513 dB away from the limit. 

©2002 Heung-No Lee 
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Coding Achievements [Costello'98] 

1 
1 
;:i: l ll 

llf>SK 

(}0 bL���=L.....�=�-=�C.......���~=�-���� 
-2. tf 

Benedetto and Montorsi 
..j.JI 

Powtr Erlki.::ncy, E., .?\"
1
1dBJ 

The Turbo Decoder 

❖· Takes the likelihood probability, on input being + 1 or -1, sequence

from the sequence of received signals.

❖ Generates a posteriori probability, on input being + 1 or -1, at each of

the decoder assigned to a particular constituent encoder.

❖ Note the following

Pr{X=+liY} = Pr{X=+l,Y}/p{Y} = p{YIX=+l}Pr{X=+l}/p{Y}

❖ Thus, the posterior can be generated by the product of likelihood and

the prior.

❖ Get the priors from the other constituent decoders.

(This is the Basic Idea)

©2002 Heung-No Lee 
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Rate 1/3 Turbo Code Example 

decision 

©2002 Heung-No Lee 

The Turbo Decoder (2) 

❖ Now denote the following vector variables

- y0
: the sequence (block) received for uncoded transmission

- y1 : the received sequence for the first constituent conv. encoder

- y2 
: the received sequence for the second one

Note that all of the three sequence contains useful information about
the transmitted information sequence u

- y0= (2u-1)+ n° 

- y1= 2flu)-l+n 1 

- y0 = '.1/( rm)-1 + n2 where f(*) denotes the encoding operation of the

11 

recursive convolutional encoder on input sequence u or the interleaved rm
( one-to-one mapping)

❖ It is trivial to generate a soft metric on each input bit uk from the first
equation (i.e. the likelihood probability). But how about from the
second and the third equations? It is not trivial because of encoding
operation.

©2002 Heung-No Lee 
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Maximum A Posteriori Prob. On a Bit 

We are interested in calculating Pr { u
k = 1 IY} or 

Pr{uk 
= 01 y}, and choosing the bit which gives a bigger 

measure 
- It is the MAP criterion based on the entire observation sequence y.

- Note that the maximum likelihood sequence detection (VA) is

also based upon the entire sequence.

13 

©2002 Heung-No Lee 

MAPvs.MLSD 

Note the following relationship bet MAP and MLSD: 

Pr(u I y) = p(y, u)/p(y) 

= p(y I u )Pr( u )/p(y) 

Usually we don't need to consider p(y) because it's the 

same for all competing candidates. 

Thus, we have Pr(u I y) ex p(y I u) Pr(u). 
- When Pr(u) equally likely, no prior information.

In addition, ifwe know the entire sequence u, we know the 

encoded sequence x. Thus, we have 

Pr(u I y) = Pr(x I y) ex p(y I x)Pr(u) 

14 

©2002 Heung-No Lee 
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Sum Product Algorithm 

Pr(u I y) = Pr(x I y) ex p(y I x)Pr(u) 

Now consider Pr(uk
= l I y) 

Pr(uk = ljy) ex: L Pr(xjy) 
x:uk=l 

ex: L p(ylx)Pr(u) 
x:nk=l 

ex: L ITP(Yjlxj)Pr(uj) 
x:n1.c=l j

©2002 Heung-No Lee 

Consider our 1/3 turbo code example 

For trellis termination 
L' 

I 

Uk 

MAP-I 

nk
l 

xk
l 

I 
Yk

l 

15 

decision 

nk
2 

xk
2 y/ 

I 

First construct forward and backward progression tables 

Second draw the trellis 

Apply the BCJR algorithm on the trellis 

©2002 Heung-No Lee 
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Encoder Operation 

T = u
k 

+ R2 + R
3 

mod 2

xk 
= T + R1 

+ R2 
+ R

3

©2002 Heung-No Lee 

{ 1,-1} 

The Encoder Operation Table 

1 , L 

17 
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The Forward and Backward Tables 

19 

Terminology & Assumptions 

Consider the block size N (the size of the interleaver) 

Thus, u=(u
1
, u

2
, u

3
, . . .  , u

N
) is a binary sequence of 1 's and 

O's. 

Let c=( c/, c/, ... , c
N

') is an encoded sequence of 1 's and 
O's. 

Let x = (x
1
, x

2
, . . .  , x

N
) = 2c - 1 is channel symbols of+ 1 

and-I. 

Let y = (y
1
, y

2
, . • .  , Y

N
) = x + n, be the observation ofx 

over an A WGN channel. 

Start at the all zero state and end the trellis at the all zero 
state by enforcing the termination rule at the end of the 
block. 

©2002 Heung-No Lee 
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Another Assumption for the first decoder 

Let y := (y0, y 1) and proceed for algorithm development 

We can do the same with y :=(y0, y2) for the decoding 

operation of the second constituent decoder. 

Note that in both decoder, y0 is used in common. 

©2002 Heung-No Lee 

Maximum A Posterior probability on input bit uk

Consider the following log ratio 

P( 11 ) "cs - '5 - )· -1 P(m',m .y) 
L ( ) _ l u,. = Y _ l · L, • k-1-m .. k-m .u1,;-

. . •· 1 Uk - og f'>( . -01 ) - og
I: P( , . )1Jk- y (C' -.,,,1 5 -,,,)·1 -O rn ,,n,y · 

•>k-1- '•' k- " · 'k-

- The sign gives a hard decision

• lfL 1(uk) > 0, uk
= l with a higher probability

• Else ifL 1
(uk) <= 0, uk = 0.

- The magnitude gives the reliability of the decision

• the larger the more confident

21 

• For example, ifL
1
(uk) = + oo, then we can say uk 

= 1 with an infinite

confidence (absolutely sure).

22 
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Bin

Consider a state transition at time k-1 
Current 

Past Sk-1 Yk Sk Future 
• • 

000 

� 

000 

' 

m 

❖ Pr(uk = 11 y) ex: p(uk = 1, y)

❖ Think about the event { uk = 1}
- There are 8 edges from a current state Sk-J to a state Sk 

defined by
input u

k 
= 1.

- Note that they are all disjoint events.
❖ Thus, we have Pr(uk = l,y) oc

L (m',m):uk=l p(Sk-1 = m', sk = rn, y)

End 

• 

23 
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The Markov Property 

•❖ Given the current state, the probability on a future event
does not depend on the past. 

❖ Pr{ future I current state, past} = Pr{ future I current state}

©2002 Heung-No Lee 
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p(m', m, Y) = p(Sk_1=m', Sk=m, Yk, Yu-1, Yk+I :N) 
= p(Sk

= m, Yk, YkN I Sk_1=m', Yu-1) p(Sk_1=m', Yu-1) 
Use the Markov Property 

= p(Sk= m, Yk, Yk+I N I Sk_1=m') p(Sk_1=m', Y1 k-I ) 
Conditional Probability 

= P(Yk+JNI Sk
= m, Sk_1=m', Yk) p(Sk

= m, Yk l Sk_1=m') p(Sk_1=m', Yu-1) 
Markov Property, Again 

= P(Yk+IN I Sk
= m) p(Sk

= m, Yk I Sk_1=m') p(Sk_1=m', Yu-1) 
By definition 

= �im) Yk (m' ,m) ak_1(m') 

©2002 Heung-No Lee 

25 

Total Probability Theorem 
- ,� (S - II s - I 

)-L.8k _2=m11P k-2-rn, k-1-m,Jil:k-l 

Forward Algorithm 

©2002 Heung-No Lee 
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❖ �k(m) := P(Yk+l:N I Sk
= m)

= Im* P(Yk+l> Yk+2N> Sk+l=m* I Sk=m) 
= Im* P(Yk+2:NI Sk

=m, Yk+J, Sk+l=m* ) P(Yk+J, Sk+l=m* / sk 
= m) 

= Im* P(Yk+2NI Sk+l=m* ) P(Yk+J, Sk+l=m* / sk 
= m) 

= Im* �k+i(m*) Yk+1(m, m*) 

Backward Algorithm 

©2002 Heung-No Lee 

For transitions (S
k
-J = m', S

k 
= m) with input u

k 
= 1

p(Sk
= m, uk 

= l, Yk I Sk_1=m') 
= p(yk I Sk_,=m', Sk

=m, uk
= l) Pr(Sk

=m, uk
= llSk-l= m') 

c----:-;;;;-� �__:, Sic-1� m') Pr(S, aali j Sic. l�m')

27 

Likelihood Prob. Legitimate Transition 
or not? 1 or 0 

Trans. Prob. By 
uk

= l 

28 
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The Kernel (2) 

The likelihood Probability is the same as in VA 
- {Sk_ 1

=m', Sk=m, uk=l} is a particular edge, and thus it determines the
associated channel symbol xk assigned for the edge

- Since Yk = xk + nk, we can calculate the likelihood probability knowing nk
is N(O, o-2) where 0-2 = No/(2E,).

- P(Yk I xk) = p(nk = Yk -xk) ~ exp(- E, IYk - xd2!No)
Now recall that we have defined y=(y0, y 1) for the first
decoder:
- yjk = xik + nik , j=O, 1 for the two independent channels.

The log likelihood probability 

p(yk I xk) = p(n\)p(n\) 

©2002 Heung-No Lee 

~ exp(- Es IY0
k - x\12 /N0) exp(- Es ly\- x\12 /N0)

The Kernel (3) 

The second term is 1 if the transition is an allowed 
transition, 0 if not. 
The third term is the prior probability of the transition 
triggered by input u

k 
= 1. 

Thus, the product of the two terms is Pr(uk
= l). 

- In turbo decoding, we replace this prior with the extrinsic

information forwarded from the other decoder -- the posterior
probability Pr(uk

=l I y2).

29 

- In the first iteration, we don't have any prior information about uk.

- From the second iteration and on, we will get some message from
the second decoder, we will make use of that information; vise
versa at the other decoder.

©2002 Heung-No Lee 
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Log Ratio Convention 

(for all probabilities--priors, likelihood, posteriors) 

❖ In general, with Pr(x=+ l)+Pr(x=-1)=1, we have

Pr(x = +1) 

where L = log Pr(x=+ 1)/Pr(x=-1) 

31 
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Making use of the Log Ratios 

(for both Likelihood/Posteriors) 

-c � fJ"b 
❖ Recall x

k 
:= 2u

k
-1. '-__,, > \ --, 

❖ use Yk 
= .,fE;, xk + n

k with .N(O, Nof2)
or Yk 

= x
k + n

k with .N(O, N
o
f (2E

8
)) 

❖ Let's use the second one and for the three independent
channels we can define the log likelihood ratios for j=O, 1,2

©2002 Heung-No Lee 

Lj l p('Y{lx{ = + 1)
.- og . .  

p( 1/4lx{ = -1)
exp(-Esl'Yi - 11 2 /No)- log 

· exp(-EslYi + 112 /No)
4Es j 

- No Yk

- Le· Yi
32 
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Computation of yim' ,m) 

for x0 
k = + 1 or -1 ( uk = 1 or O)

ex [exp(.5x0
k Le y

0
k + .5 Le y1

k x\) exp(.5 x0
k '(uJ) 

= exp(.5 x\ [Le y
0

k + L/(uk)]) * exp(.5 Le y\ x 1
k) 

/ r"'l,m) 

Reliability 
information 
provided by 
the channel 

Extrinsic information 
computed and 
forwarded from the 
other constituent 
decoder 

©2002 Heung-No Lee 
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Forward-Backward algorithm 

L1 (:i:J) 
exp(.5(LcY� + Lj_ (uk)) 

log ············· · · · · ··· ··

e:rp(-.5(Lc'l O L' u

+
log L(m',m)>u1,,=l ak-1 (rn'h[

c) (rn', m )fJk( m)

L(m',m):u,.,=O ak-1 (rn')1{
e

) (rn', m)/3k(m) 

33 

Extrinsic information generated 
by the present decoder; this 
only needs to be forwarded to 
the other decoder 

34 



Looks complicated, 

but it can be compactly written in a single page 

35 
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Summary (2) 

36 



Normalization During Forward/Backward 

Normalize a's and �'s 

- Lm aim)= l 

- Lm �im) = l 

- This is necessary because we ignored the coefficient terms when
calculating of y

©2002 Heung-No Lee 

We could have calculated Pr(x\ = + 1/-1 I y) 

In this case, we are calculating the probability of events 
{x1k = +l} or{x\ = -1} giveny 

1 exp(.5(LcY� + L'i (:rD) 
L1(xk) = log . , 

0 , 1 exp(-.5(Lcyk + L1 (xk)) 

l 
L (m',m):xl = l ak-1 (rn'hke) (rn1

, rn)f3k;(m) 
+ og---------�----­

L(rn',m)::i)=O ak-1 (m'),{
e
\m/, rn)/3k(m) 

©2002 Heung-No Lee 

... 
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We have Soft-Input Soft-Output Module 

priors 
{Pr(uk)} or {Pr(xk)} 

Extrinsic values: 
{Pr(uk ly)/Pr(uk)} 

--------..:1 SISO 

y 
Posteriors {Pr( uk lY)} 
or {Pr(xk lY)} from the channel 

y 

SISO Module 

priors Extrinsic values: 
L1 '(uk) L i(uk)- L 1 '(uk) or L,'(x,J :1�-s

-
1s
_o_-_1 __:-----+ Posteriors

from the channel L1 (uk) or 
L1 (xk) 
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Max* operation 

ab ⇒ log(ab) = log(a) + log(b) =A + B 

❖ a+b ⇒ log( a + b) = log( exp(log( a)) + exp(log(b))

= log(exp(A) + exp(B)) 

= max(A, B) + log[l +exp(-JA-BJ)] 

=: max*(A,B) � 

Look-up table 

❖ Approximation: max*(A, B) � max(A, B)
- Good when high SNR

©2002 Heung-No Lee 

A voiding the computation of exponentials and 

multiplications (Logarithm of probabilities) 

Taking log of in calculating a, 13 

❖:❖ The max* operation

©2002 Heung-No Lee 
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Consider our 1/3 turbo code example 

For trellis termination 
L'I 

decision 

❖ First construct forward and backward progression tables

❖ Second draw the trellis

❖ Apply the BCJR algorithm on the trellis

©2002 Heung-No Lee 

Again, the first step is to have the trellis 

We are interested 
in calculating 

Pr{uk = 1/ y} or

Pr{xk = 1/ y}.

L(m',m): uk=I Pr{m', m/ y} 
or 

L(m',m):xk=I Pr{m', m/ y}

43 
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' 
' 
' 
' 
' 

Then, Perform Forward Progression 

' 
' 
' 

4 

a 1(4)= 
ao(O)y 1(0,4) ;' 

/ ', 
' / ' 

' 

ai{6)= 6 
a.(4)yz(4,6) 

aiO)= aiO)yz(0,0)+ 
CX3( I lY20 ,0) 

Normalize aim) at each k 

©2002 Heung-No Lee 
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Then, Backward Progression 

of observations all the 

way to the end N+3; O.W. 
there will be edge-effect. 

Normalize �im) for each k 

46 



Now with ak_i(m') and 0im) known, 
the posterior at any k-th trellis-section can be computed 

Sk-1 Yk Sk 
Xk Thus, we can now calculate 

Pr{u
k 

= 11 y} or ak_1(0) -
'1 - -Pr{x

k 
= 11 y}. 

L(m',m): uk�J a k_i(m') Yk(m' ,m)/3k(m) 
or 
Lrm·,rn): xk�1 a k-1(m ') Yk(m' ,m)i3im) 

-
-

a,k-1(1) 

a,k-1(2) 

---. uk=O

- - ♦ Uk = 1

We have Soft-Input Soft-Output Module 

priors 

{Pr(uk)} or {Pr(xJ} 
Extrinsic values: 
{ Pr( uklY )/Pr( uk)} 

_J filS�i _

j Posteriors 
Yi 

1

from the channel {Pr(ukly)} or {Pr(xkly)} 

fliO) 

flil) 

(3k(2) 
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SISO Module (Log Ratios) 

Extrinsic values: 
pnors 

L/(uk) or L/(xk) Lluk)- L/(uk) or Llxk)- L/(xk) 

______..:I SISO-i

Y; 

from the channel 

Posteriors 
Lluk) or Llxk) 

Components of the Turbo Encoder 

(Why it works so well?) 

The role of Recursive Encoder? 

- The constituent convolutional encoders of Turbo code must be
recursive (why?)

The role of Random Interleaver? 

For illustration, let's consider two simple convolutional 

encoders-feedfoward and recursive. 

(a) Feedforward (a) Recursive

©2002 Heung-No Lee 
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The Rate 1 /3 Turbo Code 

BER performance a/Turbo Code (Rate=1/3). N=16384 
10

0 
����������������������=

il'. 
LU 
0) 

0.9 

0.8 

07 

0.3 

0.2 

0.1 

0 0.2 0.4 0.6 

Eb/No (dB) 
0.8 

The Rate 1 /3 Turbo Code 

Histogram of extrinsic information at Eb/No= 0.2dB.rnte=1i3 

-0.5 0 0.5 

normalized extrinsic value 

Fall-04 51 

University of Pittsburgh 

All zero word 

-- Log ratio of the 

extrinsic is 

normalized. 

-- Does each 

histogram look 

like a Gaussian? 

-- Density 

Evolution 
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Consider the Trellises of (a) and (b) 

0 
0/0 0/0 

]� 
1/0 

Weakest error event is with input 
weight 1 having output weight 2 

©2002 Heung-No Lee 

0 
0/0 0/0 

]� 
0/1 

• 

• 

Weakest error event is not with 
input 1, but with input weight 2 
having output weight 1 

:� 1/. 
0/1 

With another 1, it returns to all-zero 
path. Otherwise, it never goes back 
to all-zero - accumulating a large 
amount of distance metric. 

53 

Watch What Happens When used in Turbo Encoder 

10000 ... 

CC-1

CC-1

000001000 ... 

the free distance of the weakest 
error event (2, 2) 

11000 ... 

RCC-1 

00100001000 ... 

, 1;3:;iq cqdeword 

, ¢odeword 

Output 
weight 5 

the free distance of the weakest 
error event (1, 5) 

The weakest error event input to one 

encoder is interleaved and becomes an 

event strong against errors when presented 

to the other encoder 
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Another Example, Recursive CC [Conv'l codes] 

©2002 Heung-No Lee 

The Weakest Events 

The input for the weakest error event is 100100000 ... , 

again input weight 2 ( output weight is 6) 

- 10000 ... results in infinite output weight sequence (Strong event)

The next one is 1000010000 .... 

©2002 Heung-No Lee 
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s-random interleaver [Divsalar]

❖ Good random interleaver must spread any adjacent bits as far as
possible.
- spread-random interleaver

s=S 

l�N
n(l) n(2) n(3) ... n(i) n(i) n(k) . . .  n(N) 
3 9 45 20 . . .  

How to construct a s-random interleaver? 

Randomly select a number from N integers { 1, 2, ... ,N} without 
replacement 
Then-th selection n(n) will be 

• Put back into the pool ifln(n) - n(i)I < s, for allj, In -jl < s
• Accepted otherwise

Repeat until exhausted 
Choose s<sqrt(N/2) 

©2002 Heung-No Lee 

s-random interleaver

❖ There are many ways to generate s-random interleaver

❖ One way is to use the procedure in previous page with the following
heuristic auxiliary rule

57 

❖ Now, consider a random selection close to the end of sequence, say at
the (N - m)-th selection such that there are m numbers left in the pool

❖ What should we do when this set of m numbers do not support the
selection rule

- Ex) Residual set at (N-5)={1,2,3,4,5} with s=S

- No matter how we select we cannot satisfy the rule

❖ Go back to (N-100)-th selection, and re-select numbers from that point
and on, hoping not to run into such a problematic residual set for the
rest of 100 selections

58 
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Analytical Performance Bounds using 

Weight Enumeration Function 

[Benedetto/Montorsi, '96] 

Recall the transfer function from convolutional codes. 

Note their definition is a little bit different from ours, given 

at the section on convolutional codes. 

In order to avoid unnecessary confusion when we read the 

paper, we will follow Benedetto's notation in this section. 

59 
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Input Output Weight Enumerating Function 

Consider a block code (n, k, dmin
) C with code rate R

e
= kin. 

Define the input-output weight enumerating function 

(IOWEF) 

where Ac 
w h 

is the number of codewords with output 

weight h and input weigh w. 

Example: (1 0 0) =}- (1 0 0 I 0 I), input weight I and 

output weight 3, for (n=6, k=3) code. 

©2002 Heung-No Lee 

60 



Union Bound on Bit Error Probability 

Using the knowledge on IOWEF, we can obtain 

n k 
W e  

�---

L L kAw,hQ( ✓2RchEb/No)
h=d,m.;,., w=l 

n 
L DhQ( ✓2RchEb/No)

h=dmin 

where Dh := ½ I::�v =l wAfI.h is multiplicity of codewords 
with weight h (not the number of codewords with weight 
h ), and EiN

0 
is the SNR per bit. 

©2002 Heung-No Lee 

Multiplicity of codewords of weight h

It is the total number of nonzero information bits 
associated with codewords of weight h, divided by k. 

©2002 Heung-No Lee 
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Example 

❖ (3, 2) code C codewords w h 

❖ AC{O,O} =l, Ac {l,2} =2, andAc {2,2} = 1 0 0 0 0 0 

❖ IOWEF is 0 1 1 1 2 

Ac(W,H) = 1+2WH2+W2H2 1 0 1 1 2 

= 1+(2W+W2)H2 
1 1 0 2 2 

Multiplicity

- D
2

= (1/2)[2*1+1*2] = 2 

©2002 Heung-No Lee 

Parallel Concatenated Block Codes 

Consider parallel concatenation of (n, k) block codes 

[k bits] 

u 

[ k bits; ( n - k) parity bits] 

Rate = k/(2(n - k)+ k) 

63 

Weight 

preserved 
[xxxx; (n - k) parity bits] 

------�Not sent (punctured) 

We know the input-redundancy weight coefficients (IRWC) 

for the two block codes 

©2002 Heung-No Lee 

{ 4c\ } {AC2 } 
• w,h1 ' w,h2 
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Analysis using Uniform Interleaver 

❖ For the analysis, imagine an
abstract interleaver
- A probabilistic device which maps

an input with weight w into (t.)
permutations, with equal
probability p=l/ (�)-

0101 Uniform ❖ Calculate an averaged performance
Interleaver using Uniform Interleaver

- The performance of a particular
interleaver will perform always
better than, or at least equal to, the
average performance.

©2002 Heung-No Lee 

Computation of IRWC 

for Turbo Code 

r--+-< 

r 0011 

0101 

1001 

0110 

1100 

, 1010 

65 

IR WC { A�:h} can be calculated using the properties of the
Uniform Interleaver. 

Maps a single input block of weight w at C
1 

into (i:J 
permutations as input to C

2 
• 

Thus, the number of codewords of output weights h 1, h
2

associated with input word of weight w is defined as

©2002 Heung-No Lee 

AC1 xAC2
w,hi w,h2 

C:�) 
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IR WEF for Turbo Codes 

IRWC 

Having the input-output weight coefficient defined, we can 

obtain the input-output weight enumerating function: 

©2002 Heung-No Lee 

Notation (the same as BM's paper) 

Consider only the systematic code from now on. 
"� Example: (3, 2) code C 

- Ac
0,0

= 1, Ac l,1=2, andAc
2,0

= 1
- IOWEF is

AC(W,Z) = 1+2WZ +W2 

❖· The weight enumerating function is
BC(H) = Lh�on Bh Hh 

where Bh is the number of codewords with weight h.

•❖ The IRWEF vs. the conditional WEF Ac
w(Z)

AC(W, Z) = Lw L
j 

Aw,j WW Z) 

©2002 Heuug-No Lee 

= Lw ww L
j 

Aw,j Z) 
= LwWw Ac

w(Z) 

codewords 
0 0 0 

0 I 1 
I O 1 
I I 0 

67 

w j 

0 0 

1 I 
1 1 

2 0 

68 



Conditional WEF 

Or, the CWEF can be obtained from the derivatives of 
A C(W, Z) in the following ways: 

©2002 Heung-No Lee 

Union Bound 

69 

We have already used the weight enumerating functions in 
calculating the union bounds for convolutional codes [refer 
to lectures on Conv. Codes] 

Let's briefly review the union bounds using BM's notation 

First, consider 

waAC' (W,Z) 
cnv 

Total number of info-bits 

associated with codewords with 

weight m=w+j. 

©2002 Heung-No Lee 

' A w J Dw w,jvV Z 
w,j 

5 J. ( l,,,r;.,) .- er r; \I• :\'o 

LetW=Z=H 
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BERforBPSK 

y k = ,JE; xk + nk, where xk E { -1, 1} with equally likely

x>O

R
e 

= rate of the code 
= number of bits 

each baud carries 

71 
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y 

Pairwise Error Event in m-dimensional vector space 

dE = II y-y'II 

y =,JE;x + n 

{l, -1} 
iid .N(O, Nof2) 
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The Complementary Error Function vs. Q(x) 

❖ MATLAB only defines the complementary error function

erfc(x)

©2002 Heung-No Lee 

with 

Probability of Bit Error (Union Bound) 

="' ED,,.,H"tl 
r!l .1/::(,-#.,.:, #,\J�•,1 

m starting from d
free 

Multiplicity of the code 

Traditional approaches ➔ max. dfree 

In Turbo code➔ Reduces D
d free 
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Approximation 

Using only a finite number of first terms, we have an 

approximation 

(6) 

starting from m=d
free 

, 

©2002 Heung-No Lee 

Where are we now? 

We have reviewed how to calculate the union bound on 

(systematic) block code ( or similarly on truncated 

convolutional codes) 

Now let's consider turbo encoder whose constituent 

encoders are systematic block codes (truncated 

convolutional codes) 

©2002 Heung-No Lee 
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Parallel Concatenated Block Codes 

Consider parallel concatenation of (n, k) block codes 

Weight 
preserved 

[k bits] 
u 

[k bits; (n-k) parity bits] 

Rate = k/(2(n-k)+k) 

[xxxx; (n-k) parity bits] 

----Not sent (punctured) 

The input-redundancy weight coefficients (IOWC) for the 

two block codes or Conditional WEFs are known to us: 

{A��
J
}, {A��} or {A�'.i(z)}, {A�'.2(Z)} 

77 
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Analysis using Uniform Interleaver 

❖, For the analysis, imagine an
abstract interleaver
- A probabilistic device which maps

an input with weight w into (�)
permutations, with equal
probability p=l/ (;;,)

❖ Calculate an averaged performance
using Uniform Interleaver
- There exist at least one interleaver

the performance of which is better
than, or at least equal to, to that of
the average performance

©2002 Heung-No Lee 

0101 

,,. 0011 
0101 

Uniform 1001 
Interleaver i--+ ◄ o 11 o

1100
" 1010 

Each word with weight w
has (;;,) matches using UI 
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WEFs ofPCBC 

Conditional WEF of Turbo code 

ACp(Z) = AZ1 (Z)xA�2 (Z)
w 

(�) 

Example: (7, 4) Hamming code 
A C(W,Z)=l +W(3Z2+Z3)+W2(3Z+3Z2)+W3(1 +3Z)+W4Z3

(1) = 4 (i) = 6 (i) = 4 

AC 1 (Z)A C 1 (Z)=(3Z2+ Z3)2=Z4(9+6Z + Z2)

(1) = 4

Due to the operation 

ofUI, the number of 

codewords with 

weight w increase 

by (k) 
w 

79 
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IRWEF of Turbo Code 

Once we know conditional WEF, we know IR WEF 

80 
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Examples 

❖ IRWEF of the PCBC can be obtained as:

A0,, (
W
I z) = 1 + w (2.25z4 + 1.sz5 + o.2sz6)+

+ w
2 (1.sz2 + 3ztt + L5Z4)+

+ w·
3 (0.25 + 1.sz + 2.25:Z2 ) + w4 

z6
. {9)

❖ Example-I: AcP1 =AC t i(Z) x Ac21(Z) /4 =Z4(9+6Z+Z2 )/4

= Z4(2.25 + 1.5 Z + 0.25Z2) 

❖ Example-2: Ac i2 = (3Z+3Z2) = Z(3 + 3 Z).

©2002 Heung-No Lee 

A cp2 x A cp2 /36 = Z2(9+6z + 9Z)/6

= z2c1.s+z + 1.sz2)

Consider Rate 1/3 PCCC 
[See Benedetto/Montorsi TC'96 paper now] 

Interleaver 
lengt:h==N 

R.ate l/3 PCCC :~· .

.--------! X \ 

reduw:lancy 
bil 

. : 
: : 

--.1: 

81 

Consider rate½ equivalent (2N, N-v) block code 

82 
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Equivalent Rate ½ (2N, N-v) Block Code 

❖ The codewords are all sequences of length 2N of the
convolutional codes, starting from and ending at the zero
state.

- Concatenation of error events of the convolutional codes.

©2002 Heung-No Lee 

n-error events in the block

1 Z i " 

«Jl)te�emt · ·�:-:7\:7' 

fl> W2 W; W,=: 
�.,,,eig!n ""-'-""'"'"'1 __ __. 

Fig. 2. £,.ompJo of o li¢4- oolm,ging !o A{w, Z. n}. 

Parity check EF generated by n-error events with total 
weight w 

A(w, Z, n) := L
j 
Awjn zi

The number of codewords with input weight w, parity weight}, 

and number of concatenated error events n

©2002 Heung-No Lee 
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The Conditional WEF 

❖ It can be approximated by (i.e., Ac wCZ))

(4; 

where 

❖ n
max 

is the largest number of error events generated by a 
weight w information sequence, is a function of w, and 

❖ We neglected the length of the error event, assuming N >>
v.

85 
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CWEF for PCCC 

❖ CWEF is

❖ Use the approximation

❖ For large N, it can be approximated by terms n
1
=n

2 
=ll,nax 

86 
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Substitute into this and get the final result 

Asymptotic Bounds on BER 

... 

P;,,(c) S: 

where romiii denotes the mininmrr1 information weight iin the 
erroT events of the CC. 

❖Fora large interleaver gain

- Make the exponent ofN, 2n
max

-w-1, as negative as possible.

❖ Note the term with w
min 

is the do minant one.

©2002 Heung-No Lee 
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F eedforward conv. code does not work 

as constituent codes 

❖ w min is 1 for feedforward convolution code ( or a block

code)

- For w=w min
= 1, the max. number of error events nmax 

= 1.

- Thus, 2nmax-w-1 = 2-2=0.

❖ There is no interleaving gain.

©2002 Heung-No Lee 

How about Recursive Conv. Code 

as constituent codes 

·❖ wmin is 2 for feedback convolution code.

- For w=w min 
=2, the max. number of error events nmax = 1

- Thus, 2nmax-w-1 = 2-2-1=-1.

❖ There is interleaving gain of 1/N.

©2002 Heung-No Lee 
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Approximation by Truncation D
m

, m<M. 

dfree=5 

Interleaving Gain 

d
T

free 
is

increase 

from 5 to 8 
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Role of Number of States in CC 

10'1 

10"' 

itr' 

,.,, 

;: 10"' 

10'$ 

tu" 

Hf
7 

i 3 4 s a 10 

�- 1S. A� upper MJJtd.� #) me, mt� �il¼!y WT' ,a PCCC WJ:lft# u.. <.."C'"'!I two �w �r1m'Oii:ttiimru .t.rn::o,ffls wi#--: 2.-t.ft .ind 16 ,,tattt Mid 
imtkmtt interleavm of kn¢ .x· re- 100 (co111tilllilOO� -c-�) BOO N z. 1@00 {dNilied �}, 

Comparison with Simulation 
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Summary 

❖ All constituent encoders must be recursive convolutional

codes.

❖ The effective free distance of constituent encoders must be

maximized.

95 
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Recall, the posteriors of both input and output 

can be calculated 

Once ak
_,(m') and Pim) calculated, 

we can compute the posteriors for the 
input and the output Pr{ uk = l ly} or 
Pr{x

k 
= lly}. 

Note that the priors Pr(mlm'), can be 
defined either by Pr(x

k
) or Pr(u

k
) 

I(m ',m): uk=l a k-1(m') Yk(m' ,m)f\(m) 
or 
I(m ',m): xk=l a k-i(m') Yk(m' ,m)�im) 

Xk 

ak_i(0) - PiO) 
'1 --­
-

Uk-1(1) 1 pk(l) 

ak_,(2) Pk(2) 

----+ Uk
= 0 

--• uk
= l 

96 Fall-04 
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Soft-Input Soft-Output Module 

priors 

{Pr(uk)} or {Pr(xk)} 

______..:I STSO-i

Yi 

from the channel 

Extrinsic values: 
{Pr(uklYi)/Pr( uk)} or {Pr(xk lYi)/Pr(xk)} 

Posteriors 
{Pr(udy)} or {Pr(xk lY;)} 

97 Fall-04 
University of Pittsburgh 

SISO Module (Log Ratios) 

priors 

L/(uk) or L/(xk) 

Yi 

from the channel 

Extrinsic values: 
Li(uk)-Li '(uk) or Llxk)-Li '(xk) 

Posteriors 
Lluk) or Llxk) 

98 Fall-04 
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u 

Serial Concatenation of Mapping Machines 

and Turbo Decoding 

z'=1t(z) 
�--� X y=x+n 

Mapping-I Mapping-2 (2x-l) 

1t 

Priors: Extrinsic values: Priors: Extrinsic values: 
{P(z\)} {P(z\ly)/P(z\)} {P(z

k)} {P(zkly)/P(zk)} 
t---------------,n-1�-------.,--------i-...:....___::_..,.._J

from the 
channel 

SJS0-2 SIS0-1 

Posteriors 
{P(z\ly)} 

Dec 

No 

input 

Posteriors 
{P(zklY)} or 
{P(udy)} 

99 Fall-04 
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Serially Concatenation of Mapping Machines and 

Turbo Decoding (2) 

1t 

Priors: Extrinsic values: Priors: Extrinsic values: 
{L(z\}} {L(z' dY)-P(z' 

k
)} {L(zk)} {L(z

kly)-L(zk
)} 

SIS0-2 
n-1

SIS0-2 

y 
Posteriors No Posteriors 

from the {L(z\lY)l input {L(zdy)} or 

channel {L(udy)} 

Dec 

Where L denotes the log ratio of the probabilities. For 
example, L(.zk/Y) := log

Pr(zk=l ly) '· Pr(zk=Oly) 
I 00 Fall-04 
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Application of Iterative Turbo Decoding Principle 

Serially Concatenated Convolutional Codes 

- Benedetto et al, TIT '98 

Iterative Equalization and Decoding

- One of the earlier one is the paper by Anastasopoulos and Chugg,
Asilomar Conf. In 1997

Bit-Interleaved Coded Modulation with Iterative Decoding 

- Li and Ritcey, TC 2002

*!* Iterative Mutilevel Demodulation and Decoding

- Stephan Brink 

Iterative channel estimation and decoding/equalization

101 Fall-04 

©2002 Heung-No Lee University of Pittsburgh 

Serial Concatenation of Convolutional Codes 

Rate = kin 

Outer code 
----@ 

Inner code 
RD=k/p Ri=p/n 

do 
f N 

d\ 

❖ Serially concatenated convolution code (n, k, N) where N
is the length of the interleaver (Assumed to be a multiple
ofp)

Example: k= l, p=2, n=3, N = 200: Rate 1/3 code
- The input to outer code is length 200, and the output of the inner

code is 300

©2002 Heung-No Lee 
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Union Bound Analysis on SCCC 

r:t(=l i:,h,=h
, t.:::::.J r'�t 

• A,,hi The number of codewords withj error events, where each
error event is with input weight l and the output weight h

• Let nM is the maximum number of error events, then the number of
codewords with input weigh l and the output weight h

Af,, ,;t ('f):.:-� No. of trellis sections 

Uniform Interleaver Analysis 

103 Fall-04 
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The coefficients of conditional WEFs for outer and inner 

code are 

Why bounds? -­
neglecting the length 
of error events 

The coefficients of conditional WEF of Serially 

concatenated block code (Uniform Interleaver Argument) 

©2002 Heung-No Lee 
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Bit Error Probability 

❖ Use a bound for e:) > (N-�+ l,il > z�.

❖ Thus, the coefficient of conditional WEF of the SCCC

Finally, 

• [/[[ .· A.";', ,,.i� . '. 
1

:i,n"+i;.}
'/'
lfi�tf.J[ .�, l. .� i.f�r :1 

;V/Jti .XJt;; ... Y ?t·-:1t 

Examine this 

further 

J>a{ci <-· -x·� ,.-hR,,1:.";,.//1;�, ,·�- "\ "' ,....... n"' +·n'-l-l 
�,> >,_ Vj .;;; £... �-' £... £... £... 

J,,,,h,," w=st�; l-t'_;· 11''""'1 1l ·.....ii 
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The Exponent of N 

a:=n° + ni - l - l 

At high SNR, the first term-the smallest output weight 

term-will dominate. 

In the paper, the analysis was carried out on this first term 

and obtain the following result. 

©2002 Heung-No Lee 
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Bit Error Probability using Union Bound (2) 

When d0 
f is even, 

When d0 
f is odd 

©2002 Heung-No Lee 
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Summary of Major Results of SCCC 

The inner decoder must be recursive. 

The outer decoder can be either recursive or feedforward. 

The interleaver gain is NA{ -d0 
f /2} for even values of d0 

f

and NA{-( d0 
f + 1/2)} for odd values of d0 

f

- Choose an outer decoder with a large, possibly odd, free distance

©2002 Heung-No Lee 
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Different Behavior of Convergence 

. 6 iterations 

109 Fall-04 
University of Pittsburgh 

Turbo Code Problems 

- P14.1, P14.2,

Trellis Code Problems 

P13.4 

HW#6 

Problem #1: Design a rate-2 8 PSK four trellis-states code without 

any parallel transitions 

• Find the free ED of your code

• Compare it with that of the best 4 trellis states code

Problem #2: Reproduce the Channel Capacity results (Fig.2 in 

Ungerboeck's paper) for m-ary PSK signals (m=2, 4, 8, 16): 

(Submit the MATLAB program for this, along with your results) 

©2002 Heung-No Lee 
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Density Evolution 

Fall-04 University of Pittsburgh 

Agenda 

❖ Density Evolution: Turbo Code

- Refer to Divsalar et al's TMO Progress Report 42-144 (See this

paper in the course web-page) and Stephan Ten Brink's paper

(Trans. On Comm. Oct. 2001)

❖ SISO Module for LDPC Decoding

❖ Coded Modulation over ISi Channel

Fall-04 University of Pittsburgh 

© 200x Heung-No Lee 
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Reference Papers 

,,;. Gallager's Decoding Analysis (Section 4.3 his Thesis) 

❖ Two kinds of methods to analyze the code and design a better code

- Use EXIT charts (Ten Brink)

- Use Density Evolution (Richardson)

- Originally, Gallager's threshold based analy sis

❖ Design oflow-density parity-check codes for modulation and detection

ten Brink, S.; Kramer, G.; Ashikhmin, A.; Communications, IEEE Transactions

on, Volume: 52, Issue: 4 ,  April 2004, Pages:670- 678.

❖ The capacity of low-density parity-check codes under message-passing decoding

Richardson, T.J.; Urbanke, R.L.;

Information Theory, IEEE Transactions on, Volume: 47, Issue: 2, Feb 2001, Pages:599

-61 8.

❖ Design of capacity-approaching irregular low-density parity-check codes

Richardson, T.J.; Shokrollahi, M.A.; Urbanke, R.L.;

Information Theory, IEEE Transactions on, Volume: 47, Issue: 2, Feb 2001, Pages:619

-637.

Fall-04 University of Pittsbnrgh 3 
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Consider our 1/3 turbo code example again 

For trellis termination L'I 

MAP-1 

decision 

Assume all zero input bits 

All three are all zero codewords {xk
0= O},{ xk

1 = O},{ x/= O} 

All -1 's transmitted 

Fall-04 University of Pittsburgh 
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Mapping Rule 

Let's use the same mapping rule we have been using 

- Codeword bit 1 is + 1 and codeword bit O is -1

Not very convenient for the purpose of describing the density
evolution, but let's use it for the sake of keeping the notation
straight

All zero codeword transmitted ➔ a sequence of all -1 's 

transmitted ➔ Negative log ratios of extrinsic values, 

likelihood values, and posteriors are favorable. 

All three blocks are sequences of-1 's. 

Fall-04 University of Pittsburgh 
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The Property of Log Ratio SISO Signals 

priors 
Extrinsic values: 

5 

{L'(uk)} or {L'(xk)} {L(uk)- L'(uk)} or {L(xk)- L'(xk)} 

y 

from the 
channel 

_:1
,-------, 

SJSO I.-----
Posteriors 
{L(uk) or L(xk)} 

❖ LLR(yk) is Gaussian.
❖· Posterior LR=LLR(y\)+Prior LR+Extrinsic LR.
❖ Simulation shows the histogram of extrinsic LR values does look

Gaussian.
Posterior LR is Gaussian 

- Prior LR is Gaussian (Must be independent from Yk)

Fall-04 University of Pittsburgh 
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Property of Log Ratio SISO Signals 

First, let's take a look at the log likelihood ratio 
- y = x + n : suppose y is a realization of random variable Y

associated with the binary r.v. XE {-1,1} and the Gaussian r.v. N,
with mean O and variance Nof(2E5)

- LLR(y) = log[p(ylx=l)/p(ylx=-1)] = (4E/N0) y

Given x = -1, we can define 
L=(4E/N0

)*Y = (4E/N0
)*(-l +N) 

= µL + (-µL
)* N 

µL 
= -4E/N0

crL

2 := Var(L) = (4E/N0
)2 * (N0

/(2EJ) = 8E/N
0

crL

2= 2 lµd 
- The variance of log ratio value is twice the absolute value of mean.

Fall-04 University of Pittsburgh 
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Normalized Log Ratio 

Let Z := L/µL

- Var(Z) = (l/µL)2 2lµL I = 2/lµd =Var(noise)
- E{Z} =l

With µL 
increase to infinity, var(Z) goes to zero or 

SNR=l/var(Z) goes to infinity 
Higher SNR (Smaller variance) means 
- The decision is getting more and more reliable.

Recall the density evolution of the rate 1/3 turbo code in 
previous lecture. 

Fall-04 University of Pittsburgh 
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Consistent Densities 

We observed that LLR(y) = I µ
L
I y 

- Consistent probability density

- The variance of the density is twice the mean

Not only the likelihoods, but also those of the extrinsic are 

consistent Gaussian. 

- Again, the variance is twice the mean.

❖ We only need to keep track of a single parameter, either

the mean or the variance.

Fall-04 University of Pittsburgh 9 
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Computation ofyim' ,m) 
for x0

k 
=+ 1 or -1 (u

k 
= 1 or 0) [Turbo-Code Lecture] 

❖ Yk (m',m) = Pr(Yk I xk) liOl 

ex [exp(.5x\ Le
y\+ .5 Le

y\ x\) exp(.5 x0
k u, )) 

= exp(.5 x\ [Le
y\+ L 1 '(uk)]) * exp(.5 Le y\ x 1

k) 

/ /Reliability 
information 
provided by the 
systematic 
portion 

Fall-04 

© 200x Heung-No Lee 

Reliability 
information 
provided by 
the parity 
portion 

University of Pittsburgh 

Extrinsic information 
computed and 
forwarded from the 
other constituent 
decoder 

10 



Forward-Backward algorithm [Turbo-Code Lecture] 

L1 ( nk) L1 (:r}) 
e:rp(.5(LcY� + L'i (nk)) 

log 
exp(-.5(Lc °. L' tb.

+ logL-(m/,rn):uk=l O'Jc-1 (rn.'),f \,n', m)f3k(m)

L-(rn',rn):uk=O O'k-1 (m'hk'") (rn', m)f}k(rn) 

Extrinsic information generated 
by the present decoder; this 
only needs to be forwarded to 
the other decoder 

Fall-04 University of Pittsburgh 
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Investigation of Iterative Convergence 

Priors: 
{a\} 

Extrinsic: 
�--�{e\} 

Log Ratio 
SIS0-1 

Likelihood: 
{flk}, {f\} 

{f\} 

Log Ratio 
SIS0-2 

❖ Extrinsic output (Consistent Gaussian) is the prior input to the other.
- Only need to keep track of a single parameter, either the mean or the

variance (or SNR = mean2/var = µ2/2µ = µ/2).

Fall-04 University of Pittsburgh 
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Investigation of Iterative Convergence 

Zero initially 

µal
= 

µe2 

Log Ratio 

S1S0-1 

Extrinsic: 

µel 

Log Ratio 

SIS0-2 

t------

� 

Investigate the input and output relationship of an 

individual SISO module. 

First S1S0-1 starts with the likelihood inputs only. 

Fall-04 University of Pittsburgh 
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Monte Carlo Simulation 

To determine the noise figure, or input/output transfer 

function of SNR, of the SISO modules. 

G 1 := function(SNRl 
in

)= SNRl
out 

, defined for S1S0-1. 

G2:= function(SNR2
in

)= SNR2
out

, defined for S1S0-2. 

Generate the sample input priors with a given input SNR, 

and measure the SNR of the output extrinsic values. 

Generate the samples independently from each other for 

different SNRs and different modules. 

Fall-04 University of Pittsburgh 
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Monte Carlo Simulation 

For SIS0-1 

Generate the priors {a\} 
with mean µa � 

.N(O, 1) 

a 1 , � µ,. + sqrt(21µ,l)'w, 

:I �---� 

Generate the log likelihood values 
{-fl\} and{f\} due to all-1 's sequences 
Note both can be generated with a single information Eb/No 

Calculate the 
mean µe of 
{e\} 

❖ With a fixed Eb/No we can obtain input/output relationship between µa 

and �le : 
- Obtain {yi

k 
=-1 + ni

k
} from Gaussian samples { n

k} with zero mean and
variance Nof(2E,).

- Obtain the log likelihood ratios from f\=L/yi
k> 

- E
s 
= E

b *Rate.

Fall-04 University of Pittsburgh 
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Monte Carlo Simulation (2) 

For SIS0-2 

Generate the priors { a2
k} 

with mean µa 

a\= µa
+ sqrt(21µal)*wk 

_:1'-----------'G2 
f------+ 

Generate the log-likelihoods 
{f2k} due to all-1 's sequences 
Note this also can be generated with information Eb/No 

Fall-04 University of Pittsburgh 
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Calculate the 
mean µe of 
{e\} 
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Monte Carlo Simulation (3) 

Both inputs, likelihood and priors, are consistent Gaussians 
which can be defined by any single parameter from 
- Mean

- Variance = 2 Mean

- SNR = Mean2N ariance = Mean/2

At the first iteration

- Priors are all Os

- Only likelihood ratios are used

Upon obtaining the output sequence ( extrinsic log ratios),
calculate the mean ( and thus the output SNR).

Obtain a set of such input-output pairs 
- For example, try SNRin = 0, 1, 2, 3, ... , 10 dB.

Fall-04 University of Pittsburgh 
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Monte Carlo Simulation ( 4) 

SNRl in �--� SNRl out 

___ 

:/ SI� l 

SNRl out 

0 

Obtain the input/output transfer function G 1 

❖ Increase input mean µa and calculate the output mean

[dB] 

❖ The first SISO starts with 0 dB SN�n (no prior information)

Fall-04 University of Pittsburgh 
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Monte Carlo Simulation ( 5) 

❖ Draw 0
2

-
1 on the same

graph

❖ Watch the iterations on

the graph

❖ In the beginning

SNR2 in=O

© 200x Heung-No Lee 

Fall-04 

SNRl out 

0 

University of Pittsburgh 

From Divsalar et al's paper 

ttm,p<ilnt 
,:11ang..,1,,,v1tr, .. ..,1 

Ei,;N,, 

© 200x Heung-No Lee 

RATE-1 :5 <:c:.:sos TLlR�i) G(•fiE 
E,�'"''· =f1fi1E 

... ······/ 

- ACTU,'.L ornsrn···{::..,LUTl(>N 
--- Q;,.IJSSIAt--l •-�;R,:ix1M.l:TION 

Fig. 7. 1t1:1rat1ons an'i'.I conv�rgsinui of a turbo de�CHlw. 

Fall-04 University of Pittsburgh 
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SNRl in 

SNR2out 
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The paper 

Available at 

Old class web­

Site. 
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Mutual Information Between Information Bit and 

Extrinsic Information 

[Ref: Ten Brink] 

o/:Z» Investigate the transfer function of 

:J 
mutual information 

"'{-t IA := /(X; a). 
'¾f;. I

E 
:= I(X; e ). 

EiNo 
Obtain the distributions from the 
histograms of samples of { e

k}. 
,t,:f;. Assume consistent Gaussian for{ ad. 
�1> If iteration be successful, these two 

measures will converge to an 
identical measure. 

Fall-04 University of Pittsbw·gh 
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The Same Monte Carlo Simulation 

Approach is the same 
• generate the consistent Gaussian samples { ak} and

{ek} 

• calculate the histogram of extrinsic output {ek
} (more complex

than calculating only the mean, but more interesting and robust)

I 9)

Fall-04 University of Pittsburgh 
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Extrinsic Information Transfer Chart 

Fall-04 

<Jf /!QraJiv,;, 
,tt !HWO 

IT� <L ,:u,, 13}�(023, 0$7[ 

bmt�der,®.:.SciB .... ,., 

,«<:,id <U,,x;,:;iet, fH'ldl'l --···I 

!l,<st-OOCtldllt, D.1ci6 
@<'!C<)f!(j ,:w,OOd,!W, 0.1 dt! 

University of Pittsburgh 

SISO Module for LDPC Decoding 

Extrinsic: { ek} 

Log Ratio 
Likelihood: {fd SISO Posteri 

The posterior is Pk= (fk +ak)+ek.

23 

The posterior is obtained from message-passing algorithm on the bipartite 
graph; ideally this should be determined by making use of the entire 
information presented at the bit nodes such that { fd

k�I :N and { akh�1:N 
❖· Unless a systematic code is used, the posteriors are available only for

codeword bits-we do not have them for information bits.
From the posteriors we get the best codeword-but not the information 
sequence 

Fall-04 University of Pittsbmgh 
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Start the message passing with fk +a
k

Start the message passing iterations with the likelihoods 

and the priors ( or whatever one that you have) 

At the end of iterations, we get the posteriors {pk} 

Fall-04 University of Pittsburgh 
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Serial Concatenation of Mapping Machines 
and Turbo Decoding 

Mapping-I 

z'=1t(z) x' 
.-'-'----- ---� 
Mapping-2 (2x'-1) 

1t 

y=x+n 

Priors: Extrinsic values: Priors: Extrinsic values: 

25 

{P(z\)} {P(z\/y)/P(z\)} {P(z
k
)} {P(z

k
/y)/P(zk)} 

L__ ___ __:_____..r
--'-

-7--.::______:_:__..__ _ __j
1t

-l�----------.,----'-i-___::_________:_ _______ __J 

SIS0-2 SIS0-1 

from the 
channel 

© 200x Heung-No Lee 

Posteriors 
{P(z'klY)} 

Fall-04 

Dec 

No 
input 

University of Pittsburgh 

Posteriors 
{P(zk

/y)} or 
{P(uk/y)} 
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Coded Modulation over ISI Channel and 

Turbo Equalization and Decoding 

Encoder Bit-to-sym 
Mapping 

ISI 
Channel ·�

+

: 

Priors: 
{P(zk)} 

Bit-to-sym 
Mapping 

n I N(O, �¥32) 

1-------f 1t !-------------. 

Extrinsic values: 
Extrinsic values: 

�------;{P(zkly)/P(z
'I-'--'-

-----,
Priors: { P(�IY )/P(bk)} 
{P(�)} �--� 

MAP 
E ualizer 

Fall-04 

Decoder 

LDPC decoder cannot Posteriors 
give this, unless it is in {P(bdy)} or 
systematic form ____ .... {P(ukly)} 

University of Pittsburgh 27 
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-1

Example of ISI Channel with 1 Memory 

Assume zk E {-1, 1} 

i
\

ut 
/

state

,__ ______ Yk=(zk ho+zk_ 1 h 1)+nk = xk + nk 

input, output 
-1, (-h0- h 1) 

�.� 

-1 o+h1)

. + 1, (+h0+h1) . 

❖ Four possible clean channel outputs xk at four branches
❖ By comparing with Yk, likelihood probability can be computed at each

edge
Fall-04 University of Pittsburgh 28 
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Agenda 

Notation 
Cycle Free Graphs 
Gallager's Decoding Analysis (Section 4.3 of his thesis) 
- Threshold Phenomenon and Calculation

- Irregular LDPC codes (Luby et al)

- Density Evolution on Bipartite Graph

- Richardson/Urbanke, SYChung, etc.

Fall-04 University of Pittsburgh 29 
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Notation on Reliability L
e

Is it Lc = 4E/N
0 

or L
c = 4 -ll'h!N0? - It depends on notation 

I used 
I have used two channel models without explicitly 
mentioning which model I was using 
Basically, for both models SNR = 2E/N0 is the same 

I. Yk = xk + nk 
with N(O, Nof (2E8) ) ➔ LR(fk) = 4E/N

0 Yk

Yk =../E,; xk + nk 
with N(O, Nof2) ➔ LR(fk) = 4-lf[;/N0 Yk

Thus, eventually both approaches give the same results
with the respective definition ofy

k

Fall-04 University of Pittsburgh 
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Notation (2) 

I meant to say Pr{Y=y} = lim
dy 

* 
0 

Pr{Y E (y, y+dy ]}/dy 

= limdy 
* 0 [Pr(Y < y+dy)-Pr(Y < y)]/dy 

It's the probability density function when it exists, such 
that 

- p(y) := limcty 
⇒ 0 [Fy(y+dy)- Fy(y)]/dy

From now on, I will use the notation p(y) to denote a pdf
of random variable Y for continuous random variable

Fall-04 University of Pittsburgh 
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Threshold Phenomenon 

31 

There is a certain threshold value associated with a (n, j, k) 
LDPC code 

When SNR is greater than the threshold, the bit error 
probability can be made arbitrarily small as the block 
length tends to infinity 

When SNR is less than the threshold, the bit error 
probability is greater than a positive bit error probability, 
regardless of the block length 

Fall-04 University of Pittsburgh 
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Cycle Free Tree 

• Unlike our previous notation, lets' now have the tier-index start

from the top to bottom

j-1 check eqn 's

© 200x Heung-No Lee 

Fall-04 

... 

... 

University of Pittsburgh 

••• 

Number of Independent Tiers m

(n, j, k) code 

Let m be the total number of tiers 

. .. 
. .. 

The total number of independent digits at the 0-th tier =

1 +j *(k-1 )* [G-1 )*(k-1 )]m-l

- The last tier = j*(k-1)

- The others = G-l)*(k-1)

n > 1 + j*(k-l)*[G-1)'1'(k-l)]m-l > [G-l)*(k-1)]111 

m < log(n)/log(G-l)*(k-1)) 

Fall-04 University of Pittsburgh 
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Tier-0 

Tier-I 

e 

e 

@ 

Tier-m 
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Recall, Simple Decoding Example (n=9, 

j=2, k=3) 

❖ Suppose we have

r=[l O O O O O O O O]

❖ Recall our simple

example, using the

majority rule, the first

error gets corrected.

Fall-04 

© 200x Henng-No Lee 
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Assumptions/ Approach 

With G=3) example 

Consider the BSC with cross-over probability Po.

Consider the hard decision decoding: 

- If both checks are unsatisfied, change the digit at the first tier.

- With the changed digit, perform the second tier, and so on.

35 

The error probability of the hard decision decoding should 

be an upper bound to that of the probabilistic decoding. 

Fall-04 University of Pittsburgh 36 
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Analysis with The Simple Decoding 

(j=3, k=4) 

❖ Suppose we start the iteration with an error
occurred at a bit node, which happens with
probability Po.

❖ The first tier calculation involves the first
and the second sets of digits (bit nodes).

❖ The 2nd tier calculation involves the second
and the third sets of digits (bit nodes).

❖ Now consider the red digit is received in
error.
Each of the two checks constraining the digit
is violated when there are even number of
errors in (k-1) digits.

Fall-04 University of Pittsburgh 
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k- 1 bits
( "'U'ffhe first set
' ' ' ' ' ' 

! 1st tier j -! 1 checks 
' ' ' ' ' ' 

(------ ___ :�2nd set

bnd tier ! 1' 
r.-..... )The 3rd set 

37 

Analysis with The Simple Decoding 
(j=3, k=4) 

A parity check constraining that 

digit will be unsatisfied iff an 

even number of errors in the rest 

( k- l) digits, and the probability 

of this event is 

k- 1 bits

( 
. yhe first set

! 1st tier j -! 1 checks
' ' 
: : 

k____ )The 2nd set 
' ' 
: ' 

i i 10.5(1+(1 - 2p
0
)k- 1) 

An error will be corrected when 

both checks are unsatisfied. 

..,.,. .. rt.,.,...)The 3rd set 

Fall-04 University of Pittsburgh 38 
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Analysis with The Simple Decoding 

G=3, k=4) (2) 

❖ Thus, the probability that a digit is received in error at the

first tier, and then corrected after the first iteration is

Error in the 

digit in the 

second set 

© 200x Heung-No Lee 

Even number of errors 

in (k- 1) digits 

Fall-04 University of Pittsburgh 

Both checks 

Analysis with The Simple Decoding 
(j 3, k=4) (3) 

❖ Now consider the situation when the probability of a digit

is received correctly, but changed due to both checks

violated

(l-
r

)[0.5(1 
f 

(1 - 2po)k•l)]
� 

Received Odd number of 
correctly • (k l) b"t 

Both checks 
errors m - 1 s 

Fall-04 University of Pittsburgh 
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The Probability of Bit Error in the 

Second/Higher Sets (j=3) 

The second tier calculations will be similarly done with the 

bit error probability on the second and the third sets. 

A bit error probability at the second set is determined by 

- P 1 
= Po (1 -[0.5(1 + (1-2po)k- 1)]2) + (1- Po)[0.5(1- (l-2p0)k- 1)]2

{Error occurred, but not flipped} OR {Error not occurred, but flipped} 

A bit error in the third set is again Po . 

At the end of 2nd tier calculation, a bit error in the third set 

is determined by 

- P2 
= Pn (1 -[0.5(1 + (1-2p 1)k-l)]2) + (1- pJ[0.5(1 - (1-2p 1)k-1)]2

Fall-04 University of Pittsburgh 41 
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By Induction (for j=3) 

The error probability of a bit in the (i+ I )-th set, obtained at 

the end of the i-th tier calculation is 

- Pi
= PoO -[0.5(1 + (1-2p,-;)k- 1)]2) + (1- p0)[0.5(1-(1-2p 1 ,)k- 1)]2

Fall-04 University of Pittsburgh 42 

© 200x Heung-No Lee 



Convergence Behavior 

{pJ converges to a number O < c < 1
We want to find Pmax 

:= max Po such that c is arbitrarily 
small. 
If Po < Pmax• then {pJ converges to zero.
If Po > Pmax 

, then {pJ converges to a non-zero positive 
constant < 1. 

Fall-04 University of Pittsburgh 
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{pj} converges to zero if 
Po < Pmax 

= 0.0394 for j=3, k=6 

Iterative Behavior in Hard Decision Iterative Behavior in Hard Decision 

0.04 .. 

.± 
D.. 

0.02 0.04 
P, 

Fall-04 
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0.1 

p
0 

= o 0395 Start

0.06 0.1 0.2 

University of Pittsburgh 
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Examples 

Table in the left lists of 

maximum p
0 

resulting in 

p
100 

< le-6. 

Compare the rate ½ codes 

- j = 4 is the best.

As the rate decreases 

Pmax increases. 

© 200x Heung-No Lee 
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j k 

3 6 

3 5 

3 4 

4 8 

4 6 

4 5 

5 10 

5 8 

5 6 

University of Pittsburgh 

Approximation G=3) 

Pi+!
= 

Pi 
2(k-1) Po

Pi
= C 1 [2(k-l)] i

Fall-04 
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Maximum 

Rate Po 

1/2 0.039 

2/5 0.061 

1/4 0.106 

1/2 0.051 

1/3 0.074 

1/5 0.095 

1/2 0.041 

3/8 0.056 

1/6 0.086 
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How about when j > 4 

❖ More than 3 checks per digit.

❖ Rule: A digit is changed when b or more checks were

violated (Determine optimized b that minimizes pJ

❖ 

Pi+l 

Fall-04 University of Pittsburgh 
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Minimize the error probability with optimum b

❖ The solution to this minimization is the smallest integer b

for which

1-po < [1+(1-2Pi)k-l]2b-j+l
PO - l-(l-2pi)k-1 ,,' 

,, 

..., __ 
,i I 1 I I ,, I I 

47 

,. - - �mm 
,': I 

As Pi decreases, b decreases 

Fall-04 
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,' I : 
,' I I 

,(---- I 

, I I 
,' I I 

,' I 
: 

,r---- I 

!'2 1'; Po 
Pi 

}"igurn ,u: Blma'l-im of d.ocoding iim'lliim11i b j > 3. 
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Change of Slope (j=4, k=8) 

Change of slope occurs 

at 41 st iteration 

© 200x Heung-No Lee 

Fall-04 

Iterative Behavior in Hard Decision 

University of Pittsburgh 

Improved LDPC codes using Irregular Graphs 

(Take this with a risk) 

The number of total edges should be the same. 

49 

At a bit node, more checks more reliable message it can 

generate (from our examples, not true in general, only from 

j=3 toj=4). 

At a check node, a less number of bit nodes means the 

more valuable message it can generate and pass it to the 

associated bit nodes. 

Competing requirements 

- Irregular structure provides more :flexibility, leading to a better

performance.

Fall-04 University of Pittsburgh 
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From Experiments (take this with a risk) 

Higher degree bit nodes -- connecting to a more number of 

check nodes -- tend to lead quicker correction capability. 

These higher degree nodes provide better information to 

associated check nodes. 

These checks subsequently provide reliable check to lower 

degree bit nodes. 

With irregular LDPC codes, the LDPC codes was shown to 

give performance better than the turbo codes. 

Fall-04 University of Pittsburgh 
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Threshold for AWGN Channel with Probabilistic 

Decoding 

Ifwe know the distribution of the i-th log ratio, we can 

define the error probability. 

Use the consistent Gaussian density evolution 

- Only needs to know the mean ( or the variance)

Use convolution in time is multiplication in frequency 

domain 

- Convolution of pdfs is multiplication in characteristic functions

(Fourier transform of pdfs)

Calculate the mean values for each and every tiers, and 

find the probability of error at the last tier. 

Fall-04 University of Pittsburgh 
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Agenda 

Density Evolution on the LDPC code graph 

Fall-04 University of Pittsbm-gh 
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Log Ratio Algorithm 

Take the log of the ratio of the posteriors 

Pr(:1:d = lly, S) Pd � . 1 - nt�t(l - 2vn) log------ = log--,-+ L. log k-l Pr(xc1 = Oly, S) 1 - Pd i=l 1 + n/=l (1 - 2Pil) 

Using tanh(;) = ;,�'+1, the summand of the second term
IS 

"' 
1-(-l)k-1 fl':_::: 1 tanh(!:.:.1:.S;fL12 ) 1+(-1)" flk-= l tanh( LR(pil)) lo g 

l-1 .. = log l 1 ... 2 
, l+(-l)k-l fl�1 tanh(LR(p;z) ) 1-(-l)k flk-=

1 tanh(LR(pil)
) l-l 2 l-l 2 

Making use of tanh-1 ( x) = ½tog i ±-: , it becomes

53 

�i=1 2 tanh-1((-l)k TTfC:i tanh(Ll!f/-iU)) Making use of 

© 200x Heung-No Lee 

= '>'j (-l)k 2 tanh-l(TTk-1 tanh(LR(p;z)
)) 

tanh-1 being 
�1=1 l=l 2 odd function 

Fall-04 University of Pittsburgh 54 



Product of Real Numbers 

TTi ai = [Hi sign(o:.;)] · e:r.p("E,i log(lo:il)) 

ab = sign(a) sign(b) exp(log(lal)) exp(log(lbl)) 

[nk-1 · (LR( ))] ("'k-1 z ( f (ILR(Pi1)I)) = l=l 8tgn Pil ·e:cp L.,l=l ,og tan i 2 · 

Fall-04 University of Pittsburgh 55 
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j(x) := -log(tanh(x/2)) = log!:�i 

Use the identity of product of real numbers to get rid of 

product 

i=l 

© 200x Heung-No Lee 

( )le . -1
(
/r
ll
-l (LR(p;i)-1 2 tanh tanh ---)) 

l=l 
2 

} h-1 h-1 ILR( . )I I:(-l)k [Il .sign(LR(p.a))]2 tanh-1[e:1:p(L log(tanh( 
;J,1 ))]

i=l l=l l=l 

j k-1 k-1 

L [ II .sign(LR(pil))] · r 1 ( L f(ILR(p;1)I) 
i=l l=l l=l 

Information generated 

by the i-th check node 

Fall-04 University of Pittsburgh 

Log ratio: info. 

from bit nodes 
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Getting Rid of (-1 )k Term 

We can get rid of (-1 )k term in the right side of Theorem 
4.1 by defining 

j(x):=-log(tanh(x/2), x> 0 

Fall-04 University of Pittsburgh 
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Finally, the Log Ratio Algorithm 

57 

Note the ratio here is Pr(x= l)/Pr(x=O), which is the inverse 
of the ratio used in Gallagar' s thesis 

With the following definitions 
- LR(pd) := log11:_d

J
')d LR(p·z) := loq-1:'iL 

' 
i . 1-p;[ 

LR(, 1) ... l . Pr(xd= llS',y)-
"P1 .- ,ogP ( -01s· )c r xd- , ,Y 

Theorem 4.1 becomes 

Fall-04 University of Pittsburgh 
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Algorithm with Summations 

(n,j, k) code withj{x) := - log(tanh(x/2))U(x) 

Initialize: 
- LR(�)=( 4E/N0)y1, 

- LR(rt1)=0, t=l, 2, ... , n and /=1,2, ... , k
•!* Iteration: 

- Bit-to-Check messages: LR(qt,QI(m,tJ), t=l,2, ... , n; m=l,2, .. . ,j

LR(qt,Ql(m,t)) = LR(f1) + Lm's<m LR(rt,Ql(m',I))
- Check-to-Bit messages: LR(rQ2(m,tJ,i), /=1,2, .. . ,L; m=l,2, ... , k

LR(r Q2(m,l),i) = [Ilm' * m sign(LR( qQ2(m ',/),/ )]
· [f1 [L m' s<mf{ILR(%2(m',/),!)I)]

Output: 
- LR(p1) = LR(f1) + Lm LR(rt,Ql(m,1))

© 200x Heung-No Lee 
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Distribution of a RV defined 

by the Sum of Random Variables 

Consider a random variable Z which is defined to be the 
sum of two independent random variables X and Y. 

Given the distributions of X and Y, say with pdf ( or pmf), 
p/x) and p/y), we can find the distribution of Z. 

p(Z=X+Y=z) = EJp(Y=z-X)}=f p/z-x) p/x) dx 
Convolution in one domain is multiplication in the other 
domain [Fourier transform]. 

59 

A characteristic function of a random variable Z is defined 
as 

E{ eiwZ}. 

Thus, we have E{ eiw(X+Y)}= E{ eiwX} E{ eiwY}.

Fall-04 University of Pittsburgh 60 
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Density Evolution 

Assumption of independence: all the log-ratio variables in 
the algorithm are independent random variables. 

We want to be able to determine the distributions of all 
involved random variables as the iteration proceeds. 

Bit-to-check message 
- A=B+(C 1+C2+ ... +C

j
_ 1)

- Apply the Fourier Transform to the distributions ofrv's B, C 1 , ... , 

Ck_ 1 , and get the distribution of A by taking the inverse Fourier
Transform of the F(p(B )) -F(p(C 1)) ·F(p(C 1)) • .•. ·F(p(Cj_ 1))

Check-to-Bit message 
- C = h- 1 [h(A 1)+ h(A2)+ ... + h(Ak_,)]
- h: R ➔ {-1, l} x {z: z 2: O}, such that (Sign x Magnitude)
- Summation of functions of random variables
- Apply the Fourier Transform to the distributions of h(A)

Fall-04 University of Pittsburgh 
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h(z) 

h(x) := (s(x):=sign(x), j(_x):=- log(tanh(x/2))), x ER 

Monotone decreasing 

Fall-04 
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3- --------,-----------

1)5: 

o�­
o 

-log(tanh(x/2))

f=f' 

University of Pittsburgh 

/ 

y=x 

1.5 
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How Do We Obtain the Distr. of h(A)? 

We have the histograrnp(x) of A-the distribution of A. 

How do we obtain the distribution of h(A)? 

Fall-04 University of Pittsburgh 63 
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The distribution of h in terms of F x(_x) 

h(x) := (S:=1 [x>0} - 1 {x:C:0}' M:=1 {x:>:0J f(x) + 1 {xsoift-x)) 
Thus, the domain of h is :Jl, and the ranges are {-1, + 1} and [O, +oo]. 

Now consider the distribution of Pr{S=s, M(x)::; y}. 

❖ Pr{S(X)=s, M(X)::; y} = Pr{M(X)::; y, X > O} 1s�+i
+ Pr{M(X)::; y , X::; 0} l s�-i

❖ Pr{M(x)::; y, X > O} = Pr{/{X)::; y, X > O} = Pr{X 2: / 1(y), X > O}
= Pr{X 2: J-1 (y)}

= 1 - F··x(/{Y)) 

Pr{M(x)::; y, X::; O} = Pr{/{-X)::; y, X::; O} 

© 200x Heung-No Lee 

= Pr{X::; -/1 (y), X::; O} 

= Fx(-f(y)) 
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Thus, we have 

"':" H(s, y) := Pr{S=s, M(x)::; y}= [1 -F--x(f{y))] l s�+i + 1·,J--/C,J)l s�-i
= HI l s�+] + H2 l s�-1 

❖ Check if it is a legitimate distribution:
- Pr{S=+l, y=oo} + Pr{S=-1, y=oo}=l?
- As y =>- oo, fly)= 0.

-j(y) 0 j(y) X 

Fall-04 University of Pittsburgh 
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Take the derivative to get the density 

❖ H(s, y) := Pr{S=s, M(x)::; y}= [l -F--x(f(y))] l F+I + F t
(

y)) l s�-i
= HI l s�+!+ H2 l s�-J 

❖ dH(s, y)/dy = [l -F--x(f{y))]/dy I F+! + F;,(--/(y )Vdy l s�-i
❖ First,

d/dy /(y) = d/dy [( eY+ 1)/(eY -1)]= - 2/( eY - e-Y) = - 1/sinh(y)
•❖· P -F--x(t(y))]/dy: (For this, let's assume continuous Fx(x))
❖ - [d/dj(y) Fx(f{y))] · [d/dy f(y))] = - Px(f{y)) · (- /sinh(y))

= Px(f{y))/sinh(y) 
❖ F\(-j(yJ)!dy = [d/d(-j(y)) Fx(-j(y))] · [d/dy (-f(y))]

= Px(-j(y))/sinh(y) 
❖ Therefore,
❖ PH(s, y) = Px(/{Y))/sinh(y) l s�+!+ Px(-j(y))/sinh(y) l s�-J 

Fall-04 University of Pittsburgh 
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How about inverse function H- 1

from (S=s, M=y) to x

Domain: (sE{-1,1}, M=y E [O, oo]) 

Range: x=sy E [-oo, +oo] 

H- 1(x) = H1 (tlx)) l{x>O} + H2(tl-x)) l{x:SO}

© 200x Heung-No Lee 

0.15 

© 200x Heung-No Lee 
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Gaussian Density 

Gaussian Densitr 

1.5 2 2.5 3 3.5 4 4.5 5 

p(x) 

x=2.0, y=0.27 
x=0.1, y=3.00 

p(S=+l, y) 

Fall-04 University of Pittsburgh 
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Convolution of Two Distributions 

We can make use of the densities, dH 
- The derivative operator commutes with summation and integrals

Fall-04 University of Pittsburgh 
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The Algorithm 

F here implies the Fourier Transform 

F(p(A))=F(p(B)) ·F(p(C 1)) · F(p(C 1)) · ..• ·F(p(Cj-1))

Ci
= h-1 [h(A 1 ) + h(A2) + ... + h(Ak_ 1 )] 

The distribution of C can be obtained from 

p(c) = dH-1 [F-1 {F(dH 1)·F(dH2) · ... ·F(dHk_ 1 )}]

Fall-04 University of Pittsburgh 
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Graphical Illustration of 

Density Evolution Algorithm 
channel LLR 

:��r •••·••i•••••••l••••••l••••••••IA•••• f •·••••l•••••J
-25 -20 -15 -10 -5 0 5 10 15 20 25 

:�r : : : ,��::; : : : l 
-25 -20 -15 -10 -5 0 5 10 15 20 25 

x 1 f
f

l bit-to-check me:ssage 
15�-�-�-�--�-�-�--�-�-�-� 

10 

5 

-5�-�-�-�--�-�-�--�-�-�-� 
-25 -20 -15 -10 -5 0 10 15 20 25 
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Using 

The idea 

Given 

In 

SY Chung 

(Comm. 

Letter 01 ') 

72 

P( e) vs. Iteration Number in Density Evolution 

Density Evolution 
10'' r. -=.,,-;-:--,-,,-,,..,-;-��-:-:.c.,,-;-:--ccc-,-,-,,-,;r.-,,�.,,-;-:--;-c-r���"TCCC.,,-;-:--,-,,-,:-:-c, 

f 10•l . .............. . 
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• • • •o���iiy ���i�ii��: i i[bii�q�a�i;�ii�� �i��j�ji��\es�ti� · • · · · · · ·(3; ·6) ·lclpc· CO dB· : : 

10, . . S)a�ingjat P(�)�O 12�7
0
11,ith o-=O 85

. . . . . . . . . . . 
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Iteration Number 
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Density Evolution 

Making use of Gaussian approximation (Sae Young Chung 

and Forney, IT 2001) 

- Looks like the fastest DE algorithm

- Recent one by Jin and Richardson: not clearly written

These are only for fast calculations 

Fall-04 University of Pittsburgh 
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Summary 

Density evolution can determine the threshold. 

Density evolution idea is currently used in many areas 

Coded Modulation for MIMO channel 

Compressive sensing 

Joint equalization and decoding 

Fall-04 University of Pittsburgh 
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The Final Exam 

Dec. 15th : 10:30am - 12:30pm. 

0:° Coverage: Entire course materials 

Fall-04 University of Pittsburgh 76 

© 200x Heung-No Lee 

The Term Project 

(Due by Dec. 17th)

❖ Choose a topic of your own and submit a paragraph (less than 10 sentences) by 
next class

Topic sentence of your term project

Objective : what are you aiming to achieve in your project. 
Expected results 
Tasks: what you need to do to 

❖ List of possible topics (simulation and verification)
- Turbo codes

Reed Solomon codes
Correlation model (Markov chain) + LDPC codes

- Trellis codes

❖ Survey paper
- Recent advances in Reed Solomon codes (soft decoding, polynomial fitting based

issues)
- Recent advances in LDPC codes (design, decoding issues)

Fall-04 University of Pittsburgh 
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Fountain Codes: Viewed from the 

perspectives of Shannon and Gallager 

©2004 Heung-no Lee 

Tutorial Session: 4:20pm - 5:50pm 

cB��;<}-=§-�� 

�Fr -=i � i=: � £� 

6/17/2010 

Aim of this Tutorial 

Motivated by the success of Fountain codes for internet 
application 

Review a few key ideas of Shannon and Gallager leading 
to the creation of Fountain codes. 

Possible new research directions. 

©200x Heung-No Lee 2 



Agenda 

Shannon's Channel Coding Theorem( 1948) 

- Typical set

- The idea of fan

Gallager' s Thesis 1962 
- LDPC codes

- MAP decoder

❖ LDPC codes over BEC

- Irregular LDPC codes (1998)

- Fountain codes (1998)

©2004 Heung-no Lee 

Communications System Model 

Source r--l> 
Input 

H 
Noisy 

➔ 
Output 

---,> 

X Channel y 

❖ Input/Output Relation of A Noisy Communication Channel

Y=X+N 

Use the channel n times. 

©200xHeung-No Lee 
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Decision 
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Entropy 

Shannon introduced Entropy as Measure of Uncertainty 

- Entropy : H(X)

- Conditional Entropy: H(XIY) or H(YIX)

When channel is noisy, the conditional entropies are non­

zero. 

Reliable communication is possible over a noisy channel 

iffthe transmission rate is smaller than H(X) - H(XIY). 

- Showed it is possible to find a code so that

P( e) ➔ 0 as long as rate < H(X) - H(XIY) 

©200x Heung-No Lee 

Meaning of Entropy 

Uncertainty = Amount oflnformation = The number of 

bits needed. 

An information source with large uncertainty produces a 

large amount of information. 

- Weather forecast in LA vs. Weather forecast in Pittsburgh

A channel with strong noise causes large ambiguity. 

©200x Heung-No Lee 
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Entropy and the Law of Large Number 

❖ Let X be a 1-0 Bernoulli with l(or error) appearing with prob. 1/10.

- H(X) = 0.47 from previous page.

❖ Consider a sequence of X's oflength n, (X
1
, X

2
, .•• , X

n
)-

❖, For a large n, due to the LLN, the set of sequences can be divided into
two exclusive sets.

- A typical set of sequences which occur in real experiment

An atypical set of sequences which almost never occur

❖ Shannon noted that the size of the typical set is 2 nHrxl .

©200x Heung-No Lee 

Typical Set 

❖ Consider binary sequences of
length 100 (n = 100). IX I n elements 

❖ The number of ls you see typically
is 10. Non-typical set 

Typical sequence happens with 
probability close to 1. 

- Non typical sequence happens
very rarely. (Law oflarge numbers)

• A chance to see the all I sequence?

7 

The size of typical set is 
2nH(X) Happens most of 

the time; smaller 

©200xHeung-No Lee 8 



Shannon's Key Idea: 

P( e) in Random Codebook Construction 

Let's select the message 

set(a codebook) randomly. 

And, see if we can make P( e) 

very small. X=x • 
• 

• 

• 

• 

2nH(Y) 

• 

• 

• 

• 

• 

• 

• 

• 

Given a fan of size 2nH(XIY=yl, 

decoding error occurs if 

there are more than one 

messages. 
Y=y 

See the analysis in the 

following page 

©200x Heung-No Lee 

Shannon's Key Idea: 

• 

• 

• 

• 

• 

P( e) in Random Codebook Construction (2) 

9 

❖ Steps:
2nH(X) 2nH(Y) 

- Select the first message (the red

dot) and send.

- With probability close to 1, we get

the typical output y.

- Randomly select the rest of the

messages.

- Consider the fan of y and find out

the probability of decoding error.

- Decoding error occurs when any

one of the other 2nR - 1 messages

is selected inside the fan.

So, let's obtain the decoding error 

probability P( e ). 

©200x Heung-No Lee 
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• • 

• • 

• • 

• • 

2"ff(X(Y-y,g�� 

• • 

• • 

• 
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P(e) in Random Codebook Construction (3) 

( 2
nH(XIY) 

J
znR_!

❖ P(e) = l- l-
2

nH(X) 
-------

The probability that 
a message selection 

2
nR 

� l -( l -Tn[H(X)-H(XIY)])
is made within the fan 

::,; 1-( l - 2
nR

T
n[H(X)-H(XIY)])

= 
2

-n[l(X ;Y)-R] 

❖ Thus, if R is chosen slightly smaller than I(X; Y), P( e) decreases to zero
as n increases.

- Now we maximize I(X; Y) by selecting the best input distribution, and obtain the

capacity, C = max
p(x) 

l(X; Y).

Note that the Shannon's capacity theorem is proved! 

©200x Heung-No Lee II 

"Information" Channel Capacity 

C = max
p(x) 

I(X; Y) 

- The maximum is taken over all input distr. p(x)

l(X; Y) is the mutual information between X and Y 

I(X; Y) = H(X) - H(XIY), 
---- maximum input-size which causes no equivocation 

on X given an output Y 
= H(Y) - H(YIX) 

---- maximum output-size which causes no uncertainty 
on Y given an input X 

H(X) = Amount of information that can be carried by X 
H(XIY) = Amount of ambiguity caused by channel noise 

©2004 Heung-no Lee 12 



Noiseless Binary Channel 

C = maxp(x) I(X; Y) = ? 

0 

1 

©2004 Heung-no Lee 

Binary Symmetric Channel 

Transmitted bits are flipped with prob. p. 

I(X; Y) = H(Y) -H(YIX) 
= H(Y) - I p(x) H(YIX=x) 
= H(Y)-H(p) 

::::; 1-H(p) 

Equality with uniform X due to 
symmetry 

C = 1 -H(p) bits 

©2004 Heung-no Lee 

0 

1 

13 

1- p
0 

1 
1- p
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Binary Erasure Channel 

❖ A transmitted bit gets lost (no decision)
with probability p.

❖ C = max I(X ; Y) 
= max

rr 
H(X) -H(XIY) 

= max
rr 

H(re)-pH(XIY = e) 

= max
rr 

H(re)-p H(re) 

= 1-p

❖ Capacity is achieved if re= 1/2.

©200x Heung-no Lee 

re 
1- p

0 

� 

1-re L 
1 1- p

Capacity of the AWGN channel 

P = Signal Energy per Channel Use 

N = Noise Energy per Channel Use 

The channel C is then given by 

C = 0.5 log2(1 + SNR) 

©200x Heung-No Lee 

0 
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Gallager' s Thesis (' 62) 

❖ (n, d
v
, d

e
) low density parity check code.

❖ Parity check matrix H [ n( 1-R) x n] of the code has

- d
v 

number of 1 � s in each column 

- de number of I's in each row

- The code rate is R = I - dv ! de 

Min. distance of a typical (n, d
v
, d

e
) code for dv 2 3

- increases linearly with n for fixed} & k.

❖ Practical decoding methods exist

- Simple or probabilistic

©200x Heung-No Lee 17 

Parity Check lvfatrix on Bipartite Graph 

0 0 0 0 

0 I 0 0 1 0 

0 0 0 0 

I 0 0 0 I 0 

0 I 0 0 0 

0 0 0 0 

©200x Heung-No Lee 

I 0 0 

0 0 

{:j 
0 0 

Xi 

0 0 I 
x, 

0 0 

0 0 
X9 

"[;] 

9
·>G), 

,,,'>❖-w.-........ 
{ \ \X9 j 

·�. ,·"" 

R = 1 -d,,I d
e 

= 1-2/3
= 1/3

18 



Probabilistic Decoding 

Total Probability: If A={A1, A2, ... , An} is a partition of S 
and B is an arbitrary event 

Pr{B} = Lni=lPr{B n AJ = Lni=lPr{B I AJ Pr{AJ 
Bayes' Theorem: We know 

{
-

I } 
Pr{AinB}

Pr A;B =----
Pr{B} 

0!0 The posterior is The likelihood x the prior 

�

1

-
A

g;

-
1 

�-A�
2 
I-�:.-. �A-" �

I 

I'r(A;IR) = 
I'r(�IA;)I'r(fi 

)'. 11:.._ Pr(BJA)Pr(A ·) 
B 

�1-l /, i 

©200x Heung-No Lee 

The Iterative Decoding Theorem 
The General Case ( 1) 

General Decoding Theorem 

19 

1. Get the input probabilities from the channel output Yk = (2xk -I)+ nk, nk � A-(0, Nof(2E.)).

Let J,. � In p(yk Ix" = l) which is the input to the iterative decoder
P(Yk lxk =0) 

"' P(x, = lly,S)2. Improve the input via the log ratio of posteriors A = In 
p ( x, = 0 I y, S) 

for all k.

©200x Heung-No Lee 



Bayes' Theorem 

Pr(;cd = l,y,S)

p(y,S) 
Pr(Sl;rd = 1,y) p(;rd = 1,y)

p(y,S) 
Pr(Sl;cd = 1,y) Pr(xd = lly) p(y)

p(y,S) 

The ratio of posteriors is of our interest 

P(x
1 
= 1 I y,S) 

P(x1 = 0 I y,S) 
P(S I x1 = 1,y)P(x1 = 1 I y) 
P(S I x1 = O,y)P(x1 = 1 I y) 

©200x Heung-No Lee

The Iterative Decoding Theorem: 
The General Case (2) 

{" ........................... ·;.··:·::::::::: .................... ::::: :: : : : : : : : : : : : : : : : : : : : :_:_: ................. ··· ..
� '., � :",_fl,� 

\'~ , 
-

Pr(Slx 1=0) = 

+l x, x,"" "(;) Pr(x 1 =01 S)

General Decoding Theorem, k = I case.

Similarly, we can update all p/s. 

9 bit nodes 

UseJ;

Pk 

GivenA1 �P(xk
= lly, S)=-;--, we can find P(Slx1 =l,y) andP(Slx1 =0,y): 

e' +I 

P(Slx
1 
=1,y)=Pr{odd#oflsinx

4 
andx

7
}xPr{odd#oflsinx

5 
andx

9
} 

= {P4,l(l- P1 ,1) + (1- p4 _ 1)P1,1 } X {Ps,i(l- P9,1) + (1- Ps,1)A 1 } 

This is the general decoding theorem of Gallager. 

21 



The Iterative Decoding Theorem: 

The General Case (3) 

The log ratio P
k 

has two parts 

- The sign of A - + / -

- The magnitude IAI - reliability of the sign

When the channel is BSC(p), 

- The magnitude !Pkl is infinite
- The sign is in error with probability p.

When the channel is BEC(p ), 

- The magnitude is O (erasure) and infinite (sure).
- There are three kinds of signs, 0, 1 or erasure.

©200x Heung-No Lee 

Threshold Phenomenon for A WGN channel 

There is a certain threshold value associated with a (n, dv, 

d
e
) LDPC code. 

P(e) 

SNR 

©200x Heung-No Lee 
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LDPC Codes/Decoding over BSC(p
0
) 

Decoding for Binary Symmetric Channel (p
0
) 

- The probability of bit error: Po
Majority Rule Decoding

Threshold Effect

Density Evolution

©200x Heung-No Lee 

Shannon's Capacity Theorem 

C = I -H(p
0
) and R < C for P(e) ~ 0. 

Use the BSC channel n times 
- n: the block length

- k: the message length

- r: the number of parities

- n = k+r

R = k/n

Then, nR<nC says we should let 
- k = n - r < n - nH(p0

) or

- r > nH(p
0
)

©200x Heung-No Lee 
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Recall, Simple Decoding Example 
(n=9, dv

=2, dc
=3) 

❖ Suppose we have
r=[l O O O O O O O O]

❖ Majority Rule decoding:
- If more than or equal to m

checks are violated, flip

the bit.

-❖ In this example, let m = 2.
Then, we note, the first 
error gets corrected. 

❖ Let's consider more
realistic cases.

©200x Heung-No Lee 

Density Evolution 
(dv=3, dc

=4) 

BSC with cross-over probability Po.

DE is the evolution of error prob. as 

iteration increases. 

Majority Rule decoding: 

If both checks are unsatisfied, change 
the bit. 

Assume decoding on a tree ( cycle 

free graph) which gives the effect 

of infinite length n 
©200x Heung-No Lee 

27 

d
e
- 1 bits

-
'':The 1st set

1-- 1 checks 

le:: )The 2nd set 
' 

' 

: ' 

i i l I l 
.,91111- rt ... ...-_)The 3rd set 
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Density Evolution 

,❖ Suppose we start the decoding iteration 
with the input of bit error probability Po. 

❖ Our aim is to see if the bit error
probability gets smaller as iterations
proceed.
- The first tier calculation involves the first and

the second sets of nodes.

- The 2nd tier calculation involves the second

and the third sets of digits (bit nodes).

- And so on.

Each tier calculation in the tree implies a 
decoding iteration in the graph. 

©200x Heung-No Lee 

of Error? 

29 

29 

Density Evolution 

❖ Now suppose that the red node is in
error.

❖ Then, each check constraining the red
would be violated if there were even
number of errors in the (k-1) digits in
the first set.

❖ The probability of such an event is
0.5(1 +(l - 2p

0)k-1)
Note ((1- Po)+ pof)k-1 ((1- Po) - Pi)k-1' 
evaluated at t = l, will give the 
probability of even 1 s. 

The error at the red node will be 
corrected when both checks are 
unsatisfied. 

©200x Heung-No Lee 

k- 1 bits
· 

-,,:The first set

j 1 checks 

:<:_-_-_- -iThe 2nd set
' ' 
: ' 

i [ 1 
.,911 .. rt.,.�)The 3rd set 
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Density Evolution (2) 

Thus, the probability that a digit is received in error at the 
first tier, and then corrected after the first iteration is 

p
0
[0.5(1 + (1 - 2p

0
)k-1 )]2

The rtnode \ ,,..----- � 
was on error 
with this 
prob. 

Even number of errors 
in (k- 1) digits 

Both checks 

Then, the probability that the red remains in error is 

Po{l- [0.5(1 + (1 - 2po)k-1)]2 } 

©200x Heung-No Lee 

Density Evolution (3) 

Now consider the situation when the probability of a digit 
is received correctly, but changed due to both checks 
violated 

o-ro)[0.5(1 f (1 - 2po/-1)]�

Received Odd number of 
correctly • (k l) b't Both checks errors m - 1 s 

©200xHeung-No Lee 
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Density Evolution (4) 

Now, let's put them together 

A bit error probability at the second set is determined by 

- p 1 = Po (1 -[0.5(1 + (1-2p0/- 1)]2 ) + (I- p0)[0.5(1 -(1-2p0t- 1 )]2

{Error occurred & not corrected} OR {No error & flipped} 

A bit error in the third set is again Po . 

At the end of 2nd tier calculation, a bit error in the third set 

is determined by 

- P2 = (1- [0.5(1 + (l-2p 1)
k-l)] 2 ) + (1- p,J[0.5(1-(1-2p 1)

k- 1)]2

©200x Heung-No Lee 

Density Evolution ( 5) 

33 

The error probability of a bit in the (i+ 1 )-th set, obtained at 

the end of the i-th tier calculation is 

- Pi
= PoO -[0.5(1 + (l-2p,_ 1)k-1)]2) + (1- p0)[0.5(1-(1-2pi_Jk-l)F

©200x Heung-No Lee 34 



Threshold Behavior 

{pJ converges to a number O < c < 1 
We want to find Pmax 

:= max Po such that c is arbitrarily 
small. 
If Po < Pmax' then {pJ converges to zero. 
If Po > Pmax 

, then {pJ converges to a non-zero positive 
constant < 1. 

©200x Heung-No Lee 

{p
j
} converges to zero if 

Po < Pmax = 0.0394 for dv=3, dc=6 

Iterative Behavior in Hard Decision Iterative Behavior in Hard Decision 

0.06,..........---,------,---------, 

End 

35 

0.2 L 

0.1 

p0 = 0.0395 Start

0.1 0.2 
p, 
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Examples 

❖ Table in the left lists of

maximum Po resulting in

P100 < le-6.

❖ Compare the rate ½ codes

- d
v 

= 4 is the best. 

❖ As the rate decreases,

Pmax mcreases.

©200x Heung-No Lee 

� 

3 

3 

3 

4 

4 

4 

5 

5 

5 

d
e 

Rate 

6 1/2 

5 2/5 

4 1/4 

8 1/2 

6 1/3 

5 1/5 

10 1/2 

8 3/8 

6 1/6 

Usage of the Given Analysis 

•!• Application of DE to other channels 

- Density evolution for A WGN case

- Density evolution for BEC

❖ Applications to

- Code Design (Code ensemble search)

- Decoder Design (Change mas iteration proceeds)

©200x Heung-No Lee 

Maximum 

Po 

0.039 

0.061 

0.106 

0.051 

0.074 

0.095 

0.041 

0.056 

0.086 
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When the channel is BEC(p
0
) 

The magnitude is O (erasure) and infinite (sure). 
- There are three kinds of signs, 0, 1 or erasure.

A check with two erasures are useless (no information) 

A bit node with any check with non erasures is 

deterministic. 

©200x Heung-No Lee 

Density Evolution for BEC(p0) 

Let Pi, qi 
denote the probability of erasure, for b2c and c2b directions, 

respectively at round i. 
❖ b2c: For an erasure b2c output, all inputs to the bit node should be erasures.

_ dv-1 

A+1 - Po ·q; 

39 

c2b: If any input to the check node is an erasure, then the output is an erasure 
too. qi 

= 1-(1-pfc-1 
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An Optimal Code Ensemble Search 

❖ There is a threshold value p
0 
* for an ensemble of LDPC

codes with fixed d
v 

and d
e
.

- If Po < p0 •, Pi 
converges to zero.

❖ They have used it to find the best LDPC code ensembles.

- Application to irregular LDPC code:
Use auxiliary poly's. 

= d� i-i Fractio� of b-nodes with 
,-l,(x) £...J A-; X degree 1 

i=l �. 

_ d>: ;-i Fractio� of c-nodes with 
p(x) - P; X degree 1 

i=l � 

• DE is then A+I = p·A(l-p(l-P;))

©200x Heung-No Lee 41 

Fountain Code 

❖ A pre-cursor to fountain code I intend to use is an LDPC
code in systematic form.

- Any LDPC code has its systematic form via Gaussian elimination
onH.

Message part Parity part 

©200x Heung-No Lee 

Hx =
� 

1 1 1 0 0 [pm] = 0
10111010 
ll0llQ0l 

G I 

Gm = p 
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Fountain Code (2) 

p = Gm where G is a [r x k] binary matrix of I/Os. 

Can we send the parity vector p over a BEC(p0) and expect 

to recover m? 

- Some p-bits are erased with prob p
0

• 

- With the non erased p-bits, we can construct p = G
r
m at Rx.

- Yes, as long as G
r 
has at least k independent rows, G

r 
is full rank.

- Thus, r >= k.

- Now, the question is to find the redundancy rater such that P(e) is

very small.

Assume G is constructed randomly. 

©200xHeung-No Lee 43 

Shannon's Capacity Theorem 

C = 1 -p
0 

and R < C for P(e) ~ 0. 

Use the BEC(p0) channel n times 

- Let n the block length

- Let k be the message length

- Let r be the number of parities

- n = k+r 

- R= kin

Then, nR <nC says we should let 

- k = n - r < n - np
0 

or 

- r > npo

©200x Heung-No Lee 44 



k 

k 

l 1 

1 1 

1 1 

' 1

Illustration of Fountain Codes 

orig:inal Q-@-oorator matrix 

1 1 1 

1 1 1 

l 1 1 

1 l I t 

1 1 1 

N 

➔ The grey p-bits are
erased in the channel.

How big N has to be, for 

recovery ofm? 

Using the LLN, N only needs to be 

slightly larger than k.

Random Fountain Codes 

•!+ Simple concept of fountain codes 

Total size of source file : k x 1 

Size of each drop : l 

Anyone who wants to receive the source file, should hold a bucket under 

the fountain and collect k + E drops. 



Random Fountain Codes - Decoding 

In order to find the inverse G,-� we need at least k
independent rows in G

r
. 

if N=k, what is the probability that a random k x k binary 
matrix, G', is invertible ? 

Random Fountain Codes: P(e) 

0.5&-co -----------�--

"""\LL LL i ••.... : •..
I "' �··· ·\······i······-····· l···· l······

1
······1····· 1····· 1 ·····

I:' 0.35 ·r · --·t· ----·!· ------:-------,-----·t·· ---· ! · · -··· 1· ------,------� -----
� i : ' : : : : : : : 
.� -, : : : : : :
� ! : ' : : : : : : : 
I- 0.3 - ./i; _: ______ : _______ : _______ : ------i------ : ______ : __ h•••: -•••••: ••••• -

'�«�Hils�IB;f�ffi�/!&ll*iB.f%l'�'t&�J'i/!&ll
7

<i!JYiils;'®,H: 
1 I ' o ' ' 

0.25 i i i i ; ; ; ; i 
0 10 20 30 40 50 60 70 80 90 100 

k 

It converges at P=0.289. 

➔ What ifN is slight greater than K?



Random Fountain Codes: P(e) 

Ifwe add a few redundancy bits, N = k + E, P ➔ 0. 

� 0.6 

'" 
:::: 0.5 

� 0.4 
"' 
.0 

� 0.3 
Q) .c 
f- 0.2 

0.1 

2 3 4 5 6 7 8 9 10 
The number of E, Redundant drop 

Random Fountain Codes 

As k increases, we can show that, a small fraction of Elk is 

suffice for near perfect decoding. 

However, the random fountain codes incur high decoding 

and encoding cost. 



Random Fountain Codes 

❖ Strength

1) Rateless

2) The number of received symbols, N, determined on the

fly.

❖ Weakness

High decoding cost because Gaussian Elimination is used

for G
r 
inverse.

- Decoding Cost : k"3 per one symbol

Practical Fountain Codes 

❖ Luby Transform code

- The first practical fountain code

- Uses a sparse graph

- encoding and decoding costs are low

❖ Raptor code

- LDPC code +LT code

- Linear encoding and decoding cost

- Most practical

- Will not be discussed today, due to time constraint



Luby Transform codes 

❖ LT code does encoding/decoding, p = Gm, on a sparse G.

Encoding algorithm 

1) Generate a number d from a given degree

distribution for a check.

2) Choose d input symbols at random and

connect them to the check

3) Repeat for each check

Luby Transform codes 

❖ Luby Transform code on a sparse graph.

❖ Message bits are not sent; only parity bits are.

❖ Decode using the message passing algorithm.

❖ To ensure at least k + E bits be received at Rx, we need to send N > (k + E)/p
0 

p-bits at Tx.

k message bits 

Not sent 

©200x Heung-No Lee 

Sent/Received 

Erased 

54 



Luby Transform codes: Decoding 

❖ Decoding algorithm is nothing but the MP algorithm.

❖ Apply the received p-bits and simplify the graph.

•:• Decoding progresses if there exists at least one degree-one node 

at a stage; otherwise, the algorithm gets stuck. 

�ij �i� 
ffi 0� 

�� 

0� 
0©© 

➔ How to guarantee the all input symbols are covered to the graph?

➔ How to guarantee the existence of degree one node at each stage?

Luby-Transform codes: Degree Distribution 

1❖ It needs to strike a balance between the two 

objectives. 

❖, The degree distribution should provide

- Coverage: each message bit should be checked at least

once by a p-bit.

• Some connections should be dense for this.

- At least one degree-I node each stage

• Connections should be sparse for this.



Luby-Transform codes: 
Degree Distribution (2) 

❖ Luby et. al found the "Soliton distribution."

The robust Soliton distribution, K=1 00,s=4 

Mostly low degree checks 
Fraction 

of 

checks 

10 20 30 40 50 60 70 80 80 100 

degree 

Summary 

Add a few high degree checks to 

ensure coverage 

❖ Reviewed a few key results of Shannon and Gallager

leading to Fountain Codes
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Preface 

These notes on polar coding are prepared for a tutorial to be given at ISIT 2012. 

The notes are based on the author's paper "Channel polarization: A method for con­

structing capacity-achieving codes for symmetric binary-input memoryless chan­

nels," published in the July 2009 issue of the IEEE Transactions on Information 

Theory. The 2009 paper has been updated to cover two major advances that took 

place since the publication of that paper: exponential error bounds for polar codes 

and an efficient algorithm for constructing polar codes. Both of these topics are 

now an integral part of the core theory of polar coding. In its present form, these 

notes present the basic theory of polarization and polar coding in a fairly complete 

manner. There have been many more important advances in polar coding in the 

few years since the subject appeared: non-binary polarization, source polarization, 

multi-terminal polarization, polarization under memory, quantum polar coding, to 

name some. Also a large number of papers exist now on practical aspects of polar 

coding and their potential for applications. These subjects are not covered in these 

notes since the goal has been to present the basic theory within the confines of a 

three-hour tutorial. 

Ankara, 

June 2012 

E. Arzkan
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Chapter 0 

Preliminaries and Notation 

Abstract This chapter gathers the notation and some basic facts that are used 
throughout. 

0.1 Notation 

We denote random variables (RVs) by upper-case letters, such as X, Y, and their 
realizations (sample values) by the corresponding lower-case letters, such as x, y.
For X a RV, Px denotes the probability assignment on X. For a joint ensemble of 
RVs (X, Y), Px,Y denotes the joint probability assignment. We use the standard no­
tation I(X; Y), I(X; YIZ) to denote the mutual information and its conditional form, 
respectively. 

We use the notationaf as shorthand for denoting a row vector (a,, ... ,aN)- Given 
such a vector af, we write a{, 1 � i,j � N, to denote the subvector (ai, ... , aj ); if 
j < i, a{ is regarded as void. Given af and d C { 1, ... , N}, we write asr1 to denote 
the subvector (ai: i Ed). We write a{,

0 
to denote the subvector with odd indices 

(ak : 1 � k � j; k odd). We write a{,e to denote the subvector with even indices 
(ak: 1 � k � j; k even). For example, for ai = (5,4,6, 2, 1 ), we have ai = (4, 6, 2), 
ai e = ( 4, 2), a1 

0 
= ( 5, 6). The notation Of is used to denote the all-zero vector. 

'Code constn'.ictions in these notes will be carried out in vector spaces over the 
binary field GF(2). Unless specified otherwise, all vectors, matrices, and operations 
on them will be over GF(2). In particular, for af, bf vectors over GF(2), we write 
af EB bf to denote their componentwise mod-2 sum. The Kronecker product of an 
m-by-n matrix A = [Au] and an r-by-s matrix B = [Bu ] is defined as
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which is an mr-by-ns matrix. The Kronecker power A 59n is defined as A ®A® (n-l) 
for all n =2'. 1. We will follow the convention that A 2JO � [ 1]. 

We write ldl to denote the number of elements in a set d. We write 1.07 to denote 
the indicator function of a set d; thus, 1.if(x) equals 1 if x Ed and O otherwise. 

We use the standard Landau notation O(N), o(N), m(N) to denote the asymptotic 
behavior of functions. 

Throughout log will denote logarithm to the base 2. The unit for channel capaci­
ties and code rates will be bits.

0.2 Binary Channels and Symmetric Capacity 

We write W: !Z" ➔ '?J/ to denote a generic binary-input discrete memoryless channel 
(B-DMC) with input alphabet&:", output alphabet '?J/, and transition probabilities 
W(ylx), x E &:", y E '?J/. The input alphabet !Z" will always be {O, 1}, the output 
alphabet and the transition probabilities may be arbitrary. We write WN to denote 
the channel corresponding to N uses of W; thus, wN : !Z"N ➔ '?J/N with wN (yf I 
xf) = rrt, W(y; I x;). 

The symmetric capacity of a B-DMC W is defined as 

I(W) � � � !w(ylx)lo W(ylx) 
- £.., £.., 2 g 

lW(ylO) + lW(yll) yE"9'xE� 2 2 

Since we use base-2 logarithms,I(W) takes values in [O, 1] and is measured in bits. 
The symmetric capacity I(W) is the highest rate at which reliable communica­

tion is possible across W using the inputs of W with equal frequency. It equals the 
Shannon capacity when W is a symmetric channel, i.e., a channel for which there 
exists a permutation n of the output alphabet '?J/ such that (i) n-1 

= n and (ii) 
W(yll) = W(n(y)IO) for all y E '?J/. 

The binary symmetric channel (BSC) and the binary erasure channel (BEC) are 
examples of symmetric channels. ABSC is a B-DMC W with '?J/ = {O, 1 }, W(OIO) =
W(l I 1 ), and W(l IO) = W(OI 1 ). A B-DMC W is called a BEC if for each y E '?J/, 
either W(ylO)W(yl 1) = 0 or W(ylO) = W(yl 1 ). In the latter case, y is said to be an 
erasure symbol. The sum of W(ylO) over i!ll erasure symbols y is called the erasure 
probability of the BEC. 

0.3 Channel Bhattacharyya parameter: A measure of reliability 

The Bhattacharyya parameter of a B-DMC W is defined as 

Z(W) � L JW(ylO)W(yll). 
yE"9' 
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The Bhattacharyya parameter Z(W) is an upper bound on the probability of MAP 
decision error when W is used only once to transmit a single bit, a-priori equally 
likely to be 0 or 1. Hence, Z(W) serves as a measures ofreliability for W. It is easy 
to see thatZ(W) takes values in [O, 1]. 

Intuitively, one would expect that I(W) � 1 iff Z(W) � 0, and I(W) � 0 iff 
Z(W) � 1. The following bounds make this precise. 

Proposition 1 For any B-DMC W, we have 

Furthermore, 

with equality iff W is a BEC. 

Proof of inequality (0.1 ):

2 
I(W) � log 

l + Z(W),

I(W)::; ✓ 1-Z(W)2
• 

I(W) + Z(W) � 1 

This is proved easily by noting that 

1 2 
og 

1 +Z(W) 

(0.1) 

(0.2) 

(0.3) 

actually equals the channel parameter denoted by E0 ( 1, Q) by Gallager [ 6, Sec­
tion 5.6] with Q taken as the uniform input distribution. (This parameter may be 
called the symmetric cutoff rate of the channel.) It is well known (and shown in the 
same section of [6]) thatJ(W) � Eo(l,Q). This proves (0.1). 

Proof of inequality (0.2): 
For any B-DMC W : !Z" ➔ f/Y, define 

d(W) � ½ L, \W(y\0)-W(y\1)\.
yE'!Y 

This is the variational distance between the two distributions W(y\0) and W(y\1) 
overy E f/Y.

Lemma 1 For any B-DMC W, I(W) ::; d(W). 

Proof Let W be an arbitrary B-DMC with output alphabet f/Y = { 1, ... , n} and put 
P; = W(i\0), Qi= W(i\1), i = 1, ... ,n. By definition,
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The ith bracketed term under the summation is given by 

L1 X x+28 
f(x) =xlog--s: + (x+28)log--s: x+u x+u 

wherex = min{P;,Qi} and 8 = ½IP;-Qil- We now consider maximizingf(x) over 
0 S x S 1 -28. We compute 

df 
=!log 

✓x(x+28)
dx 2 (x+8) 

and recognize that ✓ x(x + 28) and (x+ 8) are, respectively, the geometric and arith­
metic means of the numbersx and (x+28). So, df/dx s O andf(x) is maximized 
atx = 0, giving the inequality f(x) s 28. Using this in the expression for I(W), we 
obtain the claim of the lemma, 

Lemma 2 For any B-DMC W, d(W) S ✓1 -Z(W)2 .

Proof Let W be an arbitrary B-DMC with output alphabet ?Y = { 1, ... , n} and put 
P; = W(ilO), Qi = W(ill), i = 1, . .. ,n. Let Di g, ½IP;-Qil, 8 g, d(W) = I7=I Di, 
and Ri g, (P; + Qi)/2. Then, we have Z(W) = I7=1 ✓(Ri - 8i)(Ri + 8;). Clearly, 
Z(W) is upper-bounded by the maximum of I7=I ✓ Ry - o? over { Di} subject to 
the constraints that O S Di S Ri, i = 1, ... , n, and I?=I Di = 8. To carry out this 
maximization, we compute the partial derivatives of Z(W) with respect to Di, 

az 
aoi 

and observe that Z(W) is a decreasing, concave function of Di for each i, within 
the range O S Di S Ri. The maximum occurs at the solution of the set of equations 
dZ/d8; = k, all i, where k is a constant, i.e., at 8; = R;✓k2 /(1 +k2 ). Using the 
constraint L 8i = 8 and the fact that I?= 1 Ri = 1, we find ✓ k2 / ( 1 + k2 ) = 8. So, 
the maximum occurs at Di = 8R; and has the value I7=I ✓R7-82R7 = J1 -82.

We have thus shown that Z(W) s ✓1 -d(W)2, which is equivalent to d(W) s
✓1-z(w)2. 

From the above two lemmas, the proof of (0.2) is immediate. 
Proof of inequality (0.3): We defer this proof until Chapter 3 where it will follow 

as a simple corollary to the results there. 
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It can be seen that inequality 0.3 is stronger than inequality 0.1 and will prove 

useful later on. The weaker inequality (0.1) is sufficient to develop the polarization 

results for the time being. 





Chapter 1 

Overview of Results 

Abstract Shannon proved the achievability part of his noisy channel coding theorem 
using a random-coding argument which showed the existence of capacity-achieving 
code sequences without exhibiting any specific sequence [15]. Polar codes are an ex­
plicit construction that provably achieves channel capacity with low-complexity en­
coding, decoding, and code construction algorithms. This chapter gives an overview 
of channel polarization and polar coding. 

1.1 Channel polarization 

Channel polarization is a transformation by which one manufactures out of N inde­
pendent copies of a given B-DMC W a second set of N channels { wJl : 1 s is N} 
such that, as N becomes large, the symmetric capacity terms { I ( wJl)} tend towards 
0 or 1 for all but a vanishing fraction of indices i. The channel polarization operation 
consists of a channel combining phase and a channel splitting phase. 

1.1.1 Channel combining 

This phase combines copies of a given B-DMC W in a recursive manner to produce 
a vector channel WN: :zN ---+ <YN, where N can be any power of two, N = 2n , n:?: 0. 
The recursion begins at the 0-th level (n = 0) with only one copy of W and we set 
W1 � W. The first level (n = 1) of the recursion combines two independent copies 
of W1 as shown in Fig. 1 and obtains the channel W2 : !Z2 ---+ <Y2 with the transition 
probabilities 

(1.1) 

7 
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YI 

Uz Y2 

W2 

Fig. 1.1 The channel W2 . 

The next level of the recursion is shown in Fig. 2 where two independent copies 
of W2 are combined to create the channel W4 : �4 ➔ @'4 with transition probabili­
ties W4(y11u1) = W2(yf lu1 EB u2, u3 EB u4)W2 (yjlu2, u4). 

VI 
w 

YI 

Uz Vz 
w 

Y2 

\ I 

\ I 

\ I W2 
X 

I \ 

I \ 

U"-3 -+-►{ 
I \ 

V3 
� w

Y3 

w 
Y4 

Fig. 1.2 The channel W4 and its relation to W2 and W. 

In Fig. 2, R4 is the permutation operation that maps an input (s 1, s2, s3, s4) to 
v1 = (s1, s3, s2, s4). The mapping u1 I-+ x1 from the input of W4 to the input of W 4 can 

[ 
I O O O

J be written as x1 = u1 G 4 with G 4 = J ? 6 g . Thus, we have the relation W4 (yi I u1) =
I I I I 

W 4 (y11u1 G4) between the transition probabilities of W4 and those of W 4. 
The general form of the recursion is shown in Fig. 3 where two independent 

copies of WN/Z are combined to produce the channel WN. The input vector uf to 
WN is first transformed into sf so that s2;-1 = u2;-1 EB u2; and s2; = u2; for 1 � i � 
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U[ ,, SJ Vt YI 
--

u2 s2 V2 Y2 
--

WN/2 

'/2-1 
SN/2-1 VN/2-1 YN/2 
" 

w· 
--

u N/2 SN/2 VN/2 YN/2 
----'-

RN 

'/2+1 
SN/2+1 VN/2+1 YN/2 
" 

,., 
----'-

+I 

'/2+2 VN/2+2 YN/2 
----'-

+2 

SN/2+2 

WN/2 

u N-1 SN-I VN-1 YN-1 
�i----

UN SN VN YN 
>-I---

Fig. 1.3 Recursive construction o[WN from two copies ofWN;2. 

N /2. The operator RN in the figure is a permutation, known as the reverse shuffle 
operation, and acts on its input sf to produce 0' = (s, ,s3, ... ,sN-1,s2,s4, ... ,sN ), 
which becomes the input to the two copies of WN ;2 as shown in the figure. 

We observe that the mapping uf f--t 0' is linear over GF( 2). It follows by induc­
tion that the overall mapping uf f--t x1(, from the input of the synthesized channel 
WN to the input of the underlying raw channels wN , is also linear and may be repre­
sented by a matrix GN so that x1( = uf GN. We call GN the generator matrix of size 
N. The transition probabilities of the two channels WN and wN are related by

( 1.2) 

for all yf E tyN , uf E fZ"N _ We will show in Sect. 5.1 that GN equals BNF19n for 
any N = 2n , n :2: 0, where BN is a permutation matrix known as bit-reversal and 
F � [ l ?] . Note that the channel combining operation is fully specified by the matrix 
F. Also note that GN and F';<Jn have the same set of rows, but in a different (bit­
reversed) order; we will discuss this topic more fully in Sect. 5 .1.
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1.1.2 Channel splitting 

Having synthesized the vector channel WN out of WN , the next step of channel 
polarization is to split WN back into a set of N binary-input coordinate channels 
wJl : !}[" ➔ ryN x !J[" i-I, 1 ::; i::; N, defined by the transition probabilities

(1.3) 

where (yf, u�-l) denotes the output of wJl and Ui its input. 
To gain an intuitive understanding of the channels { wJl}, consider a genie-aided 

successive cancellation decoder in which the ith decision element estimates Ui after 
observing yf and the past channel inputs ui-l (supplied correctly by the genie re­
gardless of any decision errors at earlier stages). If uf is a-priori uniform on !J["N ,
then W�i) is the effective channel seen by the ith decision element in this scenario.

1.1.3 Channel polarization 

Theorem 1 For any B-DMC W, the channels {wJl} polarize in the sense that, for
any fixed 8 E (0, 1 ), as N goes to infinity through powers of two, the fraction of 
indices i E { 1, ... ,N} for which J(wJl) E (1 - 8, I] goes to J(W) and the fraction
for which J(wJl) E [O, 8) goes to I -J(W).

This theorem is proved in Sect. 3.3. 
The polarization effect is illustrated in Fig. 4 for W a BEC with erasure prob-

ability e = 0.5. The numbers {J(wJl)} have been computed using the recursive 
relations 

J(W(2i-l)) = J(W(i) )2
N N/2 ' 

J(W(2i) ) = 
2/(W(i) ) -J(W(i) )2 

N N/2 N/2 ' 

(1.4) 

with J(W/')) = I - e. This recursion is valid only for BECs and it is proved in
Sect. 2.2. Figure 4 shows that J(wUl) tends to be near 0 for small i and near 1 for
large i. However, J(WJ)) shows an erratic behavior for an intermediate range of i.

For general B-DMCs, the calculation of J(wJl) with sufficient degree of preci­
sion is an important problem for constructing polar codes. This issue is discussed in 
Sect. 5.3. 



1.1 Channel polarization 

0.9 

0.8 

� 0.7 ·u 
ro 

0.6 ro 
(.) 

(.) 

0.5 ·c 

E 0.4 
E 

0.3 

0.2 

0.1 

0 
256 

.· .. 

:. • r J 

. . .... . .

.;· •.: i.

512 

Channel index 

768 

Fig. 1.4 Plot of J(wtl) vs. i = 1, ... ,N = 210 for a BEC with E = 0.5. 

1.1.4 Rate of polarization 

11 

1024 

For proving coding theorems, the speed with which the polarization effect takes hold 
as a function of N is important. Our main result in this regard is given in terms of 
the parameters 

Z(w}/l) = I I jw}!l(yl(,ui- 1 IO) w}!l(yl(,ui- 1 [ l). (1.5) 
I( eYN ut'Eti:•i-1 

Theorem 2 Let W be a B-DMC. For any fixed rate R < I(W) and constant /3 < ½, 
there exists a sequence of sets {PIN} such that PIN C { 1, ... ,N}, !PIN[ � NR, and 

I z(w}/l) = o(rNI\ (1.6) 
iE!dN 

Conversely, if R > 0 and /3 > ½, then for any sequence of sets {PIN} with PIN C 
{ 1, ... ,N}, !PINI � NR, we have 

max{Z(w}/l): i E PIN}= w(rN/J). (1.7) 

This theorem is proved in Chapter 3. 
We stated the polarization result in Theorem 2 in terms {Z(w}/l)} rather than 

{ I ( w}jl)} because this form is better suited to the coding results that we will de-
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velop. A rate of polarization result in terms of {I(wil)} can be obtained from The­
orem 2 with the help of Prop. 1. 

1.2 Polar coding 

Polar coding is a method that takes advantage of the polarization effect to construct
codes that achieve the symmetric channel capacity I(W). The basic idea of polar
coding is to create a coding system where one can access each coordinate channel
wtl individually and send data only through those for which Z(w_t)) is near 0.

1.2.1 GN-coset codes 

We first describe a class ofblock codes that contain polar codes-the codes of main
interest-as a special case. The block-lengths N for this class are restricted to pow­
ers of two, N = 2n for some n � 0. For a givenN, each code in the class is encoded
in the same manner, namely, 

(1.8) 

where GN is the generator matrix of order N, defined above. For d an arbitrary
subset of { 1, ... ,N}, we may write (1.8) as 

(1.9)

where GN(d) denotes the submatrix of GN formed by the rows with indices in d.
If we now fix d and u,sz1c, but leave u,sz1 as a free variable, we obtain a map­

ping from source blocks u,sz1 to codeword blocks xf. This mapping is a coset code:
it is a coset of the linear block code with generator matrix GN(d), with the coset
determined by the fixed vector u,sz1cGN(sz1c). We will refer to this class of codes
collectively as Gwcoset codes. Individual Gwcoset codes will be identified by a
parameter vector ( N, K, d, u ,sz1c), where K is the code dimension and specifies the
size of d .1 The ratio K / N is called the code rate. We will refer to d as the infor­
mation set and to u,sz1c E :rN-K as frozen bits or vector. 

For example, the ( 4, 2, {2, 4}, (1, 0)) code has the encoder mapping 

4 4G XI
= 

UI 4 

= ( Uz, U4) u � � �] + ( 1 , 0) [ � � � �] . (1.10)

1 We include the redundant parameter K in the parameter set because often we consider an ensem­

ble of codes with K fixed and a' free. 
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For a source block (u2,u4) = (1, 1), the coded block isxi = (1, 1,0, 1). 
Polar codes will be specified shortly by giving a particular rule for the selection 

of the information set sz/.

1.2.2 A successive cancellation decoder 

Consider a Gwcoset code with parameter (N,K, szl, Upjc ). Let uf be encoded into 
a codeword xf, let xf be sent over the channel wN , and let a channel output yf be 
received. The decoder's task is to generate an estimate uf of uf, given knowledge 
of sz/, u pJc, and yf. Since the decoder can avoid errors in the frozen part by setting 
u .fZl'C = u .fZl'C, the real decoding task is to generate an estimate u tzt of u tzt.

The coding results in this paper will be given with respect to a specific succes­
sive cancellation (SC) decoder, unless some other decoder is mentioned. Given any
(N,K, szl, UpJc) Gwcoset code, we will use a SC decoder that generates its decision
uf by computing

if i E sz1c 

ifi E sz/
(1.11) 

in the order i from 1 to N, where hi : ryN x X' i-l -+ X', i E sz/, are decision func­
tions defined as 

WU)1.N •i-llO) 
if N_ I.Yt ,ul > 1W(,)1.N •1-lll) �

N I.Yt ,ul 
otherwise 

(1.12) 

for all yf E <YN , a;- 1 E X' i-l _ We will say that a decoder block error occurred if
uf # uf or equivalently ifud # Upj.

The decision functions {hi} defined above resemble ML decision functions but 
are not exactly so, because they treat the future frozen bits (u1 : j > i, j E sz1c) as 
RVs, rather than as known bits. In exchange for this suboptimality, {hi} can be com­
puted efficiently using recursive formulas, as we will show in Sect. 2.1. Apart from 
algorithmic efficiency, the recursive structure of the decision functions is important 
because it renders the performance analysis of the decoder tractable. Fortunately, 
the loss in performance due to not using true ML decision functions happens to be 
negligible: I(W) is still achievable. 

1.2.3 Code performance 

The notation Pe (N,K,szl,u.fZl'c) will denote the probability of block error for a 
(N,K, szl, Utztc) code, assuming that each data vector Utzt E X'K is sent with proba-
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bility 2-K and decoding is done by the above SC decoder. More precisely, 

Pe (N,K,d,ua1c) � 2, � L WNVJluf). 
Us4E::CK 

2 
l(e!JfN:uf(/()tuf 

The average of Pe(N,K,d,ua1c) over all choices for Uafc will be denoted by 
Pe (N,K,d): 

LI Pe (N,K,d) =

A key bound on block error probability under SC decoding is the following. 

Proposition 2 For any B-DMC Wand any choice of the parameters (N,K, d), 

(1.13) 

Hence, for each (N,K, d), there exists a frozen vector u,91c such that

(1.14) 

This is proved in Sect. 4.3. This result suggests choosing d from among all K­
subsets of { 1, ... , N} so as to minimize the RHS of ( 1.13 ). This idea leads to the 
definition of polar codes. 

1.2.4 Polar codes 

Given a B-DMC W, a GN-coset code with parameter (N,K, d, Uafc) will be called 
a polar code for W if the information set d is chosen as a K-element subset of 
{l, ... ,N} such that Z(W}j)) ::::'. Z(W;/l) for all i Ed, j Ede. 

Polar codes are channel-specific designs: a polar code for one channel may not 
be a polar code for another. The main result of this paper will be to show that polar 
coding achieves the symmetric capacity I(W) of any given B-DMC W. 

An alternative rule for polar code definition would be to specify d as a K­
element subset of {1, ... ,N} such that I(w}Jl) ?': I(w}/l) for all i Ed, j Ede. 
This alternative rule would also achieve I(W). However, the rule based on the Bhat­
tacharyya parameters has the advantage of being connected with an explicit bound 
on block error probability. 

The polar code definition does not specify how the frozen vector u a1c is to be cho­
sen; it may be chosen at will. This degree of freedom in the choice of ua1c simplifies 
the performance analysis of polar codes by allowing averaging over an ensemble. 
However, it is not for analytical convenience alone that we do not specify a precise 
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rule for selecting UJ21c, but also because it appears that the code performance is rel­
atively insensitive to that choice. In fact, we prove in Sect. 4.6 that, for symmetric 
channels, any choice for UJ21c is as good as any other. 

1.2.5 Coding theorems 

Fix a B-DMC W and a number R 2 0. Let Pe(N,R) be defined as Pe(N, LNRJ ,d) 
with d selected in accordance with the polar coding rule for W. Thus, Pe(N,R) 
is the probability of block error under SC decoding for polar coding over W with 
block-length N and rate R, averaged over all choices for the frozen bits UJ21c. The 
main coding result of this paper is the following: 

Theorem 3 For polar coding on a B-DMC W at any fixed rate R < I(W), and any 
fixed /3 < ½, 

This theorem follows as an easy corollary to Theorem 2 and the bound (1.13), 
as we show in Sect. 4.3. For symmetric channels, we have the following stronger 
version of Theorem 3. 

Theorem 4 For any symmetric B-DMC W, any fixed f3 < ½, and any fixed R < 
I(W), consider any sequence of GN-coset codes (N,K,d, u_91c) with N increasing 
to infinity, K = L NR J, d chosen in accordance with the polar coding rule for W,
and UJ2fc fixed arbitrarily. The block error probability under successive cancellation 
decoding satisfies 

(1.16) 

This is proved in Sect. 4.6. Note that for symmetric channels I(W) equals the 
Shannon capacity of W.

1.2.6 A numerical example 

The above results establish that polar codes achieve the symmetric capacity asymp­
totically. It is of interest to understand how quickly the polarization effect takes hold 
and what performance can be expected of polar codes under SC decoding in the non­
asymptotic regime. To shed some light on this question, we give here a numerical 
example. 

Let W be a BEC with erasure probability 1/2. For the BEC, there are exact formu-
las for computing the parameters z(wJl), unlike other channels where this is a diffi-
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cult problem. Figure 7 shows the rate vs. reliability trade-off for W using polar codes 
with block-lengthsN E {2 10,2 15 ,220 }. This figure is obtained by using codes whose 
information sets are of the form d( 1J) � {i E {l, ... ,N} : Z(WJ;J) < 1J }, where 
0 ::; 1J ::; 1 is a variable threshold parameter. There are two sets of three curves in 
the plot. The solid lines are plots of R( 1J) � Id( 1J) 1/N vs. B( 1J) � LiE ,Y1'(rJ) Z(wtl). 

The dashed lines are plots of R( T/) vs. L( 1J) � max;Ed(rJ) { Z(w;jl) }. The parameter
1J is varied over a subset of [O, l] to obtain the curves. 

I 

/ 

I 

/ 

( 

10-
10

�-�--�--�-��-�-��-� 
0,15 0.2 0,25 0,3 0.35 0,4 OA5 0,5 

Rate (bits) 

Fig. 1.5 Rate vs. reliability for polar coding and SC decoding at block-lengths 210,215 , and 220 on 
a BEC with erasure probability 1/2. 

The parameter R( 1J) corresponds to the code rate. The significance of B( 1J) is 
also clear: it is an upper-bound on Pe( 1J ), the probability of block-error for polar 
coding at rate R( 1J) under SC decoding. The parameter L( 1J) is intended to serve as 
a lower bound to Pe ( 1J). 

This example provides some empirical evidence that polar coding achieves chan­
nel capacity as the block-length is increased-a fact that will be established by exact 
proofs in the following. The example also shows that the rate of polarization is quite 
slow, limiting the practical impact of polar codes. 

1.2. 7 Complexity 

An important issue about polar coding is the complexity of encoding, decoding, and 
code construction. The recursive structure of the channel polarization construction 
leads to low-complexity encoding and decoding algorithms for the class of Gwcoset 
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codes, and in particular, for polar codes. The computational model we use in stating 
the following complexity results is a single CPU with a random access memory. 

Theorem 5 For the class of GN-coset codes, the complexity of encoding and the 
complexity of successive cancellation decoding are both O(NlogN) as functions of 
code block-length N. 

This theorem is proved in Sections 5.1 and 5.2. Notice that the complexity bounds 
in Theorem 5 are independent of the code rate and the way the frozen vector is 
chosen. The bounds hold even at rates above I(W), but clearly this has no practical 
significance. 

In general, no exact method is known for polar code construction that is of poly­
nomial complexity. One exception is the case of a BEC for which we have a polar 
code construction algorithm with complexity O(N). However, there exist approxi­
mation algorithms for constructing polar codes that have proven effective for prac­
tical purposes. These algorithms and their complexity will be discussed in Sect. 5 .3. 

1.3 Relations to Reed-Muller codes 

Polar coding has much in common with Reed-Muller (RM) coding [11], [14]. Ac­
cording to one construction of RM codes, for any N = 2n , n ::,, 0, and O � K � N,
an RM code with block-length N and dimension K, denoted RM(N,K), is defined 
as a linear code whose generator matrix G RM( N, K) is obtained by deleting ( N - K) 
of the rows of p?Jn so that none of the deleted rows has a larger Hamming weight 
(number of ls in that row) than any of the remaining Krows. For instance, 

and 

[ 
I O O O

J GRM(4,4) = F Z)2 
= l b? g 

I I I I 

GRM(4,2) = [l? l ?] . 
This construction brings out the similarities between RM codes and polar codes. 

Since GN and F ®n have the same set of rows for any N = 2n , it is clear that RM
codes belong to the class of Gwcoset codes. For example, RM(4, 2) is the G4-coset 
code with parameter (4,2, {2,4}, (0,0)). So, RM coding and polar coding may be 
regarded as two alternative rules for selecting the information set d of a GN-coset 
code of a given size (N,K). Unlike polar coding, RM coding selects the information 
set in a channel-independent manner; it is not as fine-tuned to the channel polariza­
tion phenomenon as polar coding is. It is shown in [l] that, at least for the class of 
BECs, the RM rule for information set selection leads to asymptotically unreliable 
codes under SC decoding. So, polar coding goes beyond RM coding in a non-trivial 
manner by paying closer attention to channel polarization. However, it is an open 
question whether RM codes fail to achieve channel capacity under ML decoding. 
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Another connection to existing work can be established by noting that polar codes 
are multi-level lulu+ vi codes, which are a class of codes originating from Plotkin's 
method for code combining [13). This connection is not surprising in view of the 
fact that RM codes are also multi-level lulu+ vi codes [9, pp. 114-125). However, 
unlike typical multi-level code constructions where one begins with specific small 
codes to build larger ones, in polar coding the multi-level code is obtained by expur­
gating rows of a full-order generator matrix, GN, with respect to a channel-specific 
criterion. The special structure of GN ensures that, no matter how expurgation is 
done, the resulting code is a multi-level lulu+ vi code. In essence, polar coding en­
joys the freedom to pick a multi-level code from an ensemble of such codes so as 
to suit the channel at hand, while conventional approaches to multi-level coding do 
not have this degree of flexibility. 

1.4 Outline of the rest of notes 

The rest of the notes is organized as follows. Chapter 2 examines the basic channel 
combining and splitting operation in detail, in particular, the recursive nature of that 
transform. In Chapter 3, we develop the main polarization result. In Chapter 4, we 
investigate the performance of polar codes and complete the proofs of polar coding 
theorems. Chapter 5 we discuss the complexity of the polar coding algorithms. 



Chapter 2 

Channel Transformation 

Abstract This chapter describes the basic channel transformation operation and in­
vestigates the way I(W) and Z(W) get modified under this basic transformation. The 
basic transformation shows the first traces of polarization. The asymptotic analysis 
of polarization is left to the next chapter. 

2.1 Recursive channel transformations 

We have defined a blockwise channel combining and splitting operation by (1.2) and 
(1.3) which transformed N independent copies of W into W�1 ), ... , W�N). The goal 
in this section is to show that this blockwise channel transformation can be broken 
recursively into single-step channel transformations. 

We say that a pair of binary-input channels W' : !!l" ➔ & and W" : !!l" ➔ & x !!l" 
are obtained by a single-step transformation of two independent copies of a binary­
input channel W : !!l" ➔ r?Y and write 

(W, W) t-+ (W', W") 

iffthere exists a one-to-one mapping f: c?Y2 ➔ & such that 

W1(f(y1,Y2)lu1) = L,�W(y1lu1 EBu;)W(y2lu;), 
u; 

W"(f(y1,Y2),u1lu2) = �W(y1lu1 EBu2)W(y2lu2) 

for all u1, u2 E !!l", YI ,Y2 E c?Y.

(2.1) 

(2.2) 

According to this, we can write (W, W) r-+ (w ? l, wfl) for any given B-DMC W 
because 

19 
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which are in the form of (2.1) and (2.2) by taking fas the identity mapping. 
It turns out we can write, more generally, 

(w(i) w(i)) (w(2i- 1J w(2iJ) N ,N i-----+ 2N '2N' 

This follows as a corollary to the following: 

Proposition 3 For any n 2: 0, N = 2n, 1 <::: i <:'.'. N,

W(Zi-l)(yZN Zi-ZI )ZN I ,uj Uzi-I = 

and 

" 1 W(i)(yN Zi-Z Zi-ZI )W(i)(yZN Zi-21 )L.. 2 N 1 ,u1,o ffiu1,e Uz;-1ffiuz; N N+ 1,u1,e Uz; 
u2; 

W (Zi)r.2N Zi-11 )ZN \YI ,u) Uz; = 

1 wUl(yN zi-z zi-z 1 )w(i)
(y

zN z;-z 1 ) 
2 N I ,u1,o ffiu1 ,e Uzi-I ffiuz; N N+1,u1 ,e Uzi·

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

This proposition is proved in the Appendix. The transform relationship (2.5) can 
now be justified by noting that (2.6) and (2.7) are identical in form to (2.1) and (2.2), 
respectively, after the following substitutions: 

W +-W(i) 
N ,

WI/ 4--- w,(Zi)
. 

'J.N ' 

uz +- uz;, 

WI w(Zi-)) 
+-- ZN '

UJ f-- Uzi-I, 
r.N Zi-Z Zi-Z) Y1 +--v 1 ,u1,o EE)ul,e ,

f(y ) (yZN Zi-Z)1,Yz +- 1 ,u1 

Thus, we have shown that the blockwise channel transformation from wN to 
(wJ'), ... , wJNJ) breaks at a local level into single-step channel transformations
of the form (2.5). The full set of such transformations form a fabric as shown in 
Fig. 5 for N = 8. Reading from right to left, the figure starts with four copies of
the transformation (W, W) c-+ (w}'l, wfl) and continues in butte,fly patterns, each
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Fig. 2.1 The channel transformation process with N = 8 channels. 

. h 1 £ . f th £ (WU) (j)) ( (2j-l) (2j))representmg a c anne trans ormat10n o e orm 
2; , W2i 

H W
2;+ 1 , W2i+I . 

The two channels at the right end-points of the butterflies are always identical and 
independent. At the rightmost level there are 8 independent copies of W; at the next 
level to the left, there are 4 independent copies of w p l and wpl each; and so on. 
Each step to the left doubles the number of channel types, but halves the number of 
independent copies. 

2.2 Transformation of rate and reliability 

We now investigate how the rate and reliability parameters, I(wtl) and Z(wtl), 
change through a local (single-step) transformation (2.5). By understanding the lo­
cal behavior, we will be able to reach conclusions about the overall transformation 
from wN to (W�1l, ... ,W�N)). Proofs of the results in this section are given in the 
Appendix. 
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2.2.1 Local transformation of rate and reliability 

Proposition 4 Suppose (W, W) H (W\ W") for some set of binary-input channels. 
Then, 

I(W') +I(W") = 2I(W), 

I(W') ::::; I(W") 

with equality iff I(W) equals O or 1. 

(2.8) 

(2.9) 

The equality (2.8) indicates that the single-step channel transform preserves the 
symmetric capacity. The inequality (2.9) together with (2.8) implies that the sym­
metric capacity remains unchanged under a single-step transform, I(W') = I(W") = 
I(W), iff Wis either a perfect channel or a completely noisy one. If W is neither per­
fect nor completely noisy, the single-step transform moves the symmetric capacity 
away from the center in the sense that I(W') < I(W) < I(W"), thus helping polar­
ization. 

Proposition 5 Suppose (W, W) H (W', W") for some set of binary-input channels. 
Then, 

Z(W") = Z(W)2 , 

Z(W') ::::; 2Z(W) - Z(W)2 , 

Z(W') ? Z(W) ? Z(W"). 

(2.10) 

(2.11) 

(2.12) 

Equality holds in (2.11) iffW is a EEC. We have Z(W') = Z(W'') iffZ(W) equals 0 
or 1, or equivalently, iff I(W) equals 1 or 0. 

This result shows that reliability can only improve under a single-step channel 
transform in the sense that 

Z(W') +Z(W")::::; 2Z(W) (2.13) 

with equality iff W is a BEC. 
Since the BEC plays a special role w.r. t. extremal behavior of reliability, it de­

serves special attention. 

Proposition 6 Consider the channel transformation (W, W) H (W', W"). If W is a 
EEC with some erasure probability E, then the channels W' and W" are EECs with 
erasure probabilities 2£ - £2 and £2

, respectively. Conversely, ifW' or W" is a EEC, 
then W is EEC. 

2.2.2 Rate and reliability for wJi) 

We now return to the context at the end of Sect. 2.1. 
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Proposition 7 For any E-DMC W, N = 2n, n 2 0, 1 � i � N, the transformation

(w}jl, w)jl) r-+ (wRt'l, w2(J/l) is rate-preserving and reliability-improving in the

sense that 

I(W2(Jj-')) +l(W2(Jjl ) = 2/(W}il), 

Z(W2(J}-')) + Z(W2(Jj)) � 2Z(W}jl), 

(2.14) 

(2.15) 

with equality in (2.15) ifJ W is a EEC. Channel splitting moves the rate and relia­
bility away from the center in the sense that 

I(W(2i-l)) < I(W(i)) < I(W(2i)) 2N - N - 2N '

Z(W(2i-l)) > Z(W(i)) > Z(W(2i))
2N - N - 2N '

(2.16) 

(2.17) 

with equality in (2.16) and (2.17) iff I(W) equals O or 1. The reliability terms further

satisfy 

Z(W2(Jj-1)) � 2Z(w}il) -Z(w}jl )
2,

Z(W2(Jjl) = Z(w}jl)
2, 

Z(W(2i)) < Z(W(i)) 
< Z(W(2i-l))

2N - N - 2N ,

(2.18) 

(2.19) 

(2.20) 

with equality in (2.18) ifJW is a EEC and with equality on either side of (2.20) ifJ
I(W) is either O or 1. The cumulative rate and reliability satisfy

N 

2J(W}j)) = NI(W), 
i=l 

N 

I,z(w}j)) � NZ(W) , 
i=I 

with equality in (2.22) ifJW is a EEC.

(2.21) 

(2.22) 

This result follows from Prop. 4 and Prop. 5 as a special case and no separate 
proof is needed. The cumulative relations (2.21) and (2 .22) follow by repeated ap­
plication of (2.14) and (2.15), respectively. The conditions for equality in Prop. 4 
are stated in terms of W rather than w}Jl; this is possible because: (i) by Prop. 4, 
I(W) E {O, 1} iff I(W}jl) E {O, 1}; and (ii) Wis a BEC iff w}Jl is a BEC, which 
follows from Prop. 6 by induction. 

For the special case that W is a BEC with an erasure probability £, it follows 
from Prop. 4 and Prop. 6 that the parameters {Z(w}/l)} can be computed through 
the recursion 

Z(W(2j-l)) = 2Z(W(j) ) -Z(WU) )2 
N N/2 N/2 ' 

Z(W(2j)) = Z(wUl )2 
N N/2 ' 

(2.23) 
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with Z(WP)) = £. The parameter Z(w;jl) equals the erasure probability of the 
channel wt). The recursive relations (1 .4) follow from (2.23) by the fact that 
J(wtl) = 1 -z(wtl) for W a BEC. 

Appendix 

2.3 Proof of Proposition 3 

To prove (2.6), we write 

=
" _

2
1 " 1 W, (y2N 

I 
2N ) " 1 W, I.N

I 
2N 2N) L... L... 2N I N N+I ul,e L.,. 2N I N\YJ ul,o ffi ul,e ·

u2; u�f+ I ,e u�f+ I ,o 

By definition (1.3 ), the sum over u�f+ 1,0 for any fixed uf� equals 

W(i) (yN 2i-2 2i-2 I ) N I ' u I ,o EB u I ,e u2;- ! EB U2; '

(2.24) 

b 2N JVN-i 2N IT\ 2N 1 JVN-i W ecause, as u2 ;+ I ,a ranges over uv , u2 ;+ I ,a w u2 ;+ I ,e ranges a so over uv . e
now factor this term out of the middle sum in (2.24) and use (1.3) again to obtain 
(2.6). For the proof of (2.7), we write 

By carrying out the inner and outer sums in the same manner as in the proof of (2.6), 
we obtain (2.7). 

2.4 Proof of Proposition 4 

Let us specify the channels as follows: W : !Z" ➔ CZ9', W' : !Z" ➔ Y, and W" :
!Z" ➔ Y x !Z". By hypothesis there is a one-to-one function f : CZ9" ➔ & such 
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that (2.1) and (2.2) are satisfied. For the proof it is helpful to define an ensemble 
of RVs (U1, U2,X1 ,X2, Y1, Y2, Y) so that the pair (U 1 , U2) is uniformly distributed 
over &:"2

, 
(X1 ,X2) = (U 1 EBU2,U2), Py1,y21x1 ,x2 CY 1 ,Y2lx 1 ,x2) = W(y 1 lx 1 )W(y2lx2), 

and Y = f(Y 1 , Y2). We now have 

W'(ylu 1 ) = P rw1 (.Ylu1), 

W"(y, u 1 lu2) = Pyu1 iu2 (y,u 1 lu2)-

From these and the fact that (Y 1 , Y2) f--7 Y is invertible, we get 

I(W') = I(U 1 ;Y) = I(U 1 ;Y1Y2), 
I(W") =l(U2;YU 1 ) =l(U2;Y 1 Y2U 1 ). 

Since U 1 and U2 are independent, I(U2;Y1Y2U 1 ) equals I(U2;Y 1 Y2IU1). So, by the 
chain rule, we have 

where the second equality is due to the one-to-one relationship between (X1 ,X2) 
and (U 1 ,U2). The proofof(2.8) is completed by noting thatl(X1X2;Y1Y2) equals 
I(X1;Y 1 ) +l(X2;Y2) which in tum equals 2J(W). 

To prove (2.9), we begin by noting that 

I(W") = I(U2; Y1Y2U 1 ) 
= I(U2; Y2) + I(U2; Y1 U 1 IY2) 
= I(W) + I(U2; Y, U 1 IY2). 

This shows that I(W") 2'. I(W). This and (2.8) give (2.9). The above proof shows 
that equality holds in (2.9) iff I(U2; Y 1 U 1 1Y2) = 0, which is equivalent to having 

Pu1 ,u2,Yi1Y2 (u 1 , u2,Y 1 IY2) = Pu1 ,Y1 IY2 
(u 1 ,YI IY2)Pu21Y2 (u2 IY2) 

for all (u1, u2,Y 1 ,Y2) such that Py2 CY2) > 0, or equivalently, 

Py1,Y21U1 ,u2 CY1 ,Y2 lu1, u2)Py2 CY2) = Py1,Y21U1 CY1 ,Y2 lu1 )Py21u2 CY2 lu2) (2.25) 

for all (u 1 , u2,Y 1 ,Y2). SincePy1 ,YzlUi ,u2 CY1 ,Y2lu 1 , u2) = W(y 1 lu1 EBu2)W(y2lu2), eq. (2.25) 
can be written as 

Substituting Py2 CY2) = ½ W(y2 lu2) + ½ W(y2 lu2 EB 1) and 

I I 
Py1 ,YzlUi (y, ,Y2 lu1) = 2

W(y 1 lu1 EB u2)W(y2 lui) + 
2

W(y1 lu1 EB u2 EB I )W(y2 lu2 EB 1)
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into (2.26) and simplifying, we obtain 

which for all four possible values of (u1, u2) is equivalent to 

Thus, either there exists no Y2 such that W(y2 f 0)W(y2 f 1) > 0, in which case J(W) = 
1, or for ally1 we have W(yi f0) = W(yi f 1), which implies /(W) = 0. 

2.5 Proof of Proposition 5 

Proof of (2.10) is straightforward. 

1 
= I, - ✓w(yi f u1)W(y2 f 0) ✓w(yi f u1 EB l)W(y2 f 1) 

2 2 
Y1,l'I 

1 
= I, ✓w(y2 f 0)W(y2 J 1) I, 2 I, ✓w(y1 f u1)W(y1 I u1 EB 1)

Y2 u1 YI 

= Z(W)2 . 
To prove (2.11), we put for shorthand a(y1) = W(y1f0), 8(yi) = W(y1fl), 

{3 (y2) = W(y2 f0), and y(y2) = W(y2 ! 1 ), and write 
z(w') = I, ✓w'(J(y1 ,Y2)fo) W'(J(y1 ,Y2)f 1) 

YT 
1 

= I, 2✓ a(yi)f3(y2) + 8(y1)r(y2) ✓ a(y1 )y(yz) + 8(y1)f3(y2) 
YT 

:s; I,� [ ✓ a(y1 )/3 Cv2) + ✓ 8(v1)rCv2)] [ ✓ a(v1)rCv2) + ✓ o(v1 )/3 Cv2)] 
YT 

-I,✓ a(y1)f3(y2)8(y1)r(y2)
YT

where the inequality follows from the identity 

[ ✓(a/3 + 8y)(ay+ 8{3)r +2 ✓ a{38y ( ./a-v8)2 ( ✓7i - jy)2 

= [h/cxiI+ ftr)(for+ /8P)-2✓af3orJ 2 . 
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Next, we note that 

I_a(y1 )J f3(y 2 )r(y2 ) = Z(W). 
li 

Likewise, each term obtained by expanding 
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gives Z(W) when summed overyT. Also, J a(y1 )f3(y 2 )8(y1 )y(y 2 ) summed over YT
equals Z(W) 2. Combining these, we obtain the claim (2.11 ). Equality holds in (2.11) 
iff, for any choice ofyy, one of the following is true: a(y1)/3(n)r(y 2 )8(y1) = 0 or 
a(y1) = 8(yi) or /3(y 2 ) = y(y 2 )- This is satisfied if Wis a BEC. Conversely, ifwe
take YI = Y2, we see that for equality in (2 .11 ), we must have, for any choice of 
YI, either a(y1) 8 CY1) = 0 or a(y1) = 8 CY1 ); this is equivalent to saying that W is a
BEC. 

To prove (2.12), we need the following result which states that the parameter
Z(W) is a convex function of the channel transition probabilities.

Lemma 3 Given any collection of B-DMCs Wj: :r ➔ <Y, j E /, and a probability 
distribution Q on/, define W: :r ➔ <Y as the channe!W(ylx) = LJE/ Q(j)W1(ylx). 
Then, 

L Q(j)Z(Wj) s Z(W). 
jE/ 

(2.27) 

Proof This follows by first rewriting Z(W) in a different form and then applying
Minkowsky's inequality [6, p. 524, ineq. (h)]. 

Z(W) = L JW(ylO)W(ylI)
y 

= -1 + ! I, [I. JW(ylx)]
2 

2 
y X 

� -1 + � L, _L Q(j) [I.Jw1(ylx)]
2 

Y JE/ X 

= L Q(j)Z(Wj).
JE/ 

We now write W' as the mixture 

where 
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and apply Lemma 3 to obtain the claimed inequality 

Since O :S Z(W) :S 1 and Z(W") = Z(W)2 , we have Z(W) 2 Z(W"), with equality 
iff Z(W) equals O or 1. Since Z(W') 2 Z(W), this also shows that Z(W') = Z(W") 
iff Z(W) equals O or 1. So, by Prop. 1, Z(W') = Z(W") iff J(W) equal to 1 or 0. 

2.6 Proof of Proposition 6 

From (2.1), we have the identities 

W1(f(y1,Y2)I0)W1(f(y1,Y2)II) = 

and 

i [W(y 1 J0)2 +W(y 1 Jl)2] W(y2 JO)W(y2 Jl)+ 

i [W(y2 J0)2 + W(y2J1)2] W(y1 JO)W(y 1 Jl) (2.28) 

W'(f(y1 ,Y2)I0)-W'(f(y1 ,Y2)I 1) =
1 
2 

[W(y 1 JO) - W(y1 J l )][W(y2 JO) - W(y2Jl)]. (2.29) 

Suppose W is a BEC, but W' is not. Then, there exists (y 1 ,Y2) such that the left 
sides of (2.28) and (2.29) are both different from zero. From (2.29), we infer that 
neither YI nor y2 is an erasure symbol for W. But then the RHS of (2.28) must be 
zero, which is a contradiction. Thus, W' must be a BEC. From (2.29), we conclude 
that J(y1 ,Y2) is an erasure symbol for W' iff either YI or Y2 is an erasure symbol for 
W. This shows that the erasure probability for W' is 2£ - £2, where E is the erasure
probability of W.

Conversely, suppose W' is a BEC but W is not. Then, there exists y1 such that 
W(y1JO)W(y 1 Jl) > 0 and W(y 1 JO)-W(y 1 Jl)-=/= 0. By takingy2 =y1, we see that 
the RHSs of (2.28) and (2.29) can both be made non-zero, which contradicts the 
assumption that W' is a BEC. 

The other claims follow from the identities 

and 

w" (f(y1 ,Y2), u1 Jo) w" (f(y1 ,Y2), u1 Jl) 
1 

= 

4
W(y1 Ju1)W(y1 Jui E0 l)W(y2JO)W(y2 Jl)
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W11

(f(y1 ,y2), UJ IO)-W11

(f(y1 ,Y2), UJ I 1) 
1 

= 

2 
[W(y1 lu1 )W(y2I0)- W(y1 lu1 EB l)W(y2ll)].
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The arguments are similar to the ones already given and we omit the details, other 
than noting that (f(y1,Y2),u1) is an erasure symbol for W" iffbothy1 andy2 are 
erasure symbols for W.





Chapter 3 

Channel Polarization 

Abstract This chapter proves the main polarization theorems. 

3.1 Polarization Theorems 

The goal of this chapter is to prove the main polarization theorems, restated below. 

Theorem 1 For any B-DMC W, the channels {Wj)} polarize in the sense that.for
any fixed 8 E (0, 1 ), as N goes to infinity through powers of two, the fraction of

indices i E {1, ... ,N} for which I(Wj)) E (1 - 8, 1] goes to J(W) and the.fraction

for which I(Wj)) E [O, 8) goes to 1 - I(W). 

Theorem 2 Let W be a B-DMC. For any fixed rate R < I(W) and constant /3 < ½, 
there exists a sequence of sets { dN} such that dN C { 1, ... ,N}, ldNI � NR, and

I, Z(WJ/l) = o(rN13 ). (3.1) 
iEJilN 

Conversely, if R > 0 and /3 > ½, then for any sequence of sets { dN} with J4N C 
{1, ... ,N}, ldNI �NR, we have

(3.2) 

3.2 A stochastic process framework for analysis 

The analysis is based on the recursive relationships depicted in Fig. 5; however, 
it will be more convenient to re-sketch Fig. 5 as a binary tree as shown in Fig. 6. 
The root node of the tree is associated with the channel W. The root W gives birth 

31 
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to an upper channel w} 1) and a lower channel w}2l, which are associated with the
two nodes at level 1. The channel w

P
) in turn gives birth to the channels wj 

1) and
wj2l, and so on. The channel W2�) is located at level n of the tree at node number i 
counting from the top. 

There is a natural indexing of nodes of the tree in Fig. 6 by bit sequences. The root 
node is indexed with the null sequence. The upper node at level 1 is indexed with 0 
and the lower node with 1. Given a node at level n with index b1 b2 · · · bn , the upper 
node emanating from it has the label b I b2 · · · b110 and the lower node b I b2 · · · b11 1.

According to this labeling, the channel W2�) is situated at the node bi b2 · · · bn with 
i = I+ LJ=l b12n-J_ We denote the channel W2�) located at node b1 b2 · · · bn alterna­
tively as Wb i ... bn . 

w(ll -Wt 4 - 0 0 

(2) W8 = Woo 1 
w2C

1l = Wo 

0 
w(2)-Wt 

r
4 - 0 

w 

I 

(4) W8 = Wo1 1 

wJ3l = W1 

w:(2) - w 2 - I 

wC
4
l-w 4 - I 

Fig. 3.1 The tree process for the recursive channel construction. 

We define a random tree process, denoted { K11 ; n � 0}, in connection with Fig. 6. 
The process begins at the root of the tree with Ko = W. For any n � 0, given that 
Kn = wb 1 ···bn , Kn+l equals wb 1 ···bnO or wb 1 ·bn l with probability 1/2 each. Thus, the 
path taken by {Kn } through the channel tree may be thought of as being driven by 
a sequence of i.i.d. Bernoulli RVs { En ; n = 1, 2, ... } where Bn equals O or 1 with 
equal probability. Given that E 1 , ... ,En has taken on a sample value b1 , ... , bn , the 
random channel process takes the value Kn = Wb

1 
···bn. In order to keep track of the 
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rate and reliability parameters of the random sequence of channels Kn, we define the 
random processes In= I(Kn) and Zn= Z(Kn)-

For a more precise formulation of the problem, we consider the probability space 
(Q, §,P) where Q is the space of all binary sequences ( b1 , b2, ... ) E {0, l} 00, § is 
the Borel field (BF) generated by the cylinder sets S( b1 , ... , bn) 4= { m E Q : W1 = 
b1, ... , Wn = bn}, n 2 1, b1, ... , bn E {0, 1 }, andP is the probability measure defined 
on§ such that P(S( b1 , ... , bn)) = 1/2n. For each n 2 1, we define ffn as the BF 
generated by the cylinder sets S( b1 , ... , b;), 1 :Si :Sn, b1 , ... , b; E {0, 1 }. We define 
!fro as the trivial BF consisting of the null set and Q only. Clearly, !fro C ff I C · · · C 
ff. 

The random processes described above can now be formally defined as follows. 
Form= (w1, Wz, ... ) E Q and n 2 1, defineBn(m) = Wn, Kn(w) = Wwi•··Wn,ln(w) = 
I(Kn(w)), andZn(m) = Z(Kn(w)). Forn = 0, define Ko= W,lo = l(W), Zo = Z(W). 
It is clear that, for any fixed n 2". 0, the RVs En, Kn, In, and Zn are measurable with 
respect to the BF ffn. 

3.3 Proof of Theorem 1 

We will prove Theorem 1 by considering the stochastic convergence properties of 
the random sequences {In} and {Zn}. 
Proposition 8 The sequence of random variables and Borel fields {In , ffn; n 2 0}
is a martingale, i.e., 

ff n C ffn+ 1 and In is ffn-measurable , 
E[Jlnl] < 00, 

In= E[ln+1 lffn]. 

(3.3) 
(3.4) 
(3.5) 

Furthermore, the sequence {In;n 2 O} converges a.e. to a random variable loo such 
that E [loo] = Io. 
Proof Condition (3.3) is true by construction and (3.4) by the fact that 0 :S In :S 1. 
To prove (3.5), consider a cylinder set S( b1 , ... , bn) E ffn and use Prop. 7 to write 

1 1 
E[ln+IIS( b1 ,··· , bn)] = i(Wb 1 -·bnO)+i(Wb 1 -·bn l) 

= l(Wb i ···bn). 

Since I(Wb i ···bn) is the value of In on S( b1, ... , bn), (3.5) follows. This completes 
the proof that {In , ffn} is a martingale. Since {In, ffn} is a uniformly integrable 
martingale, by general convergence results about such martingales (see, e.g., [3, 
Theorem 9.4.6]), the claim aboutloo follows. 

It should not be surprising that the limit RV loo takes values a.e. in { 0, 1}, which 
is the set of fixed points of I(W) under the transformation (W, W) >-+ (w P l, wpl), 
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as determined by the condition for equality in (2.9). For a rigorous proof of this 
statement, we take an indirect approach and bring the process { Zn; n 2:: 0} also into 
the picture. 

Proposition 9 The sequenc e of random var iables and Bor el fields { Zn, §n; n 2:: 0}
is a supermart ingale, i.e., 

E[IZn l] < 00
, 

Zn 2:'. E[Zn+1 l§n]. 

(3.6) 
(3.7) 
(3.8) 

Furthermore, the sequenc e {Zn;n 2:: 0} conv erg es a.e. to a random var iable Zoo 
which takes values a.e. in {O, 1 }. 

Proof Conditions (3.6) and (3.7) are clearly satisfied. To verify (3.8), consider a 
cylinder set S( b1, ... , bn) E §n and use Prop. 7 to write 

1 1 
E[Zn+I IS(b1, .. ,, bn)] = 2?(Wb 1 . . .  bnO) + 2z(Wb 1 bn i)

:S Z(Wb 1 - bJ-

Since Z(Wb 1
- bn) is the value of Zn on S(b1, . . .  ,bn), (3.8) follows. This completes 

the proof that {Zn, §n} is a supermartingale. For the second claim, observe that the 
supermartingale { Zn, §n} is uniformly integrable; hence, it converges a.e. and in 
2 1 to a RV Zoo such that E[IZn -Zoo I]-----+ 0 (see, e.g., [3, Theorem 9.4.5]). It follows 
that E[IZn+l -Zn l] -----+ 0. But, by Prop. 7, Zn+I = Z� with probability 1/2; hence, 
E[IZn+l -Zn l] 2:: (1/2)E[Zn(l -Zn)] 2:: 0. Thus, E[Zn(l -Zn)]-----+ 0, which implies 
E[Zoo(l -Zoo)]= 0. This, in turn, means that Zoo equals 0 or 1 a.e. 

Proposition 10 The lim it RV loo takes values a.e. in the set {O, 1 }: P(Joo = 1) = lo 
and P(loo = 0) = 1 -lo. 

Proof The fact that Zoo equals 0 or 1 a.e., combined with Prop. 1, implies that 
loo = 1 -Zoo a.e. Since E[loo] = lo, the rest of the claim follows. 

As a corollary to Prop. 10, we can conclude that, as N tends to infinity, the sym­
metric capacity terms {l(wJl : 1 :S i :SN} cluster around 0 and 1, except for a 
vanishing fraction. This completes the proof of Theorem 1. 

3.4 Proof of the converse part of Theorem 2 

We first prove the converse part of Theorem 2 which we restate as follows. 
Proposition 11 For any f3 > 1 /2 and w ith P(Zo > 0) > 0, 

(3.9) 
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Proof Observe that the random process Zn is lower-bounded by the process { Ln :
n EN} defined by Lo:= Zo and for n 2 1 

Ln 
= L�-1

Ln =Ln-1
when En = 1,
when En

= 0.

h - 2
Sn h S ·- -.;:n S h T us, Ln - L0 

w ere n .- ,L,i=I 
B;. o, we ave

P(Zn S T2/Jn) S P(Ln S 2-2/J")

= P(sn 2 n/3 -log2(-log2(Zo))).

For f3 > ½, this last probability goes to zero as n increases by the law of large
numbers. 

3.5 Proof of Theorem 2: The direct part 

In this part, we will establish the direct part of Theorem 2 which may be stated as
follows. 

Proposition 12 For any given /3 < ½ and£> 0, there exists n such that

(3.10)

The proof of this result is quite lengthy and will be split into several parts. It
will be convenient to introduce some notation and state an elementary fact before
beginning the proof. 

For n > m 2 0 and OS /3 S 1, define Sm ,n = I.7=m+I 
B; and

S"m,n(/3) = {co E Q: Sm ,n(w) > (n-m)/3}.

By Chemoff's bound (see, e.g., [6, p. 531]), for Os /3 S ½, the probability of this
set is bounded as 

P[S"m,n(/3)] 2 l -r(n-m)[I-£(/3)] (3.11)

where Y'f'(/3) = -f3log2(/3)-(l -/3) log2(1-{3) is the binary entropy function.
Clearly, for O S /3 < 1 /2, the probability of S"m,n goes to 1 as ( n -m) increases.
Define no ({3, £) as the smallest value of ( n -m) such that the RHS of (3 .11) is
greater than or equal to 1 -£. 
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3. 5.1 A bootstrapping method

We first give a bound to majorize the process {Zn} on a sample function basis. For 
this it is more convenient to consider the logarithmic process Vn := log2(Zn )- This 
process evolves as 

Vt+! = 2f-t 
Vi+1 S V; + 1 

whenB;+1 = 1, 
whenB;+J = 0. 

Thus, at each step either the value is doubled or incremented by an amount not 
exceeding one. In terms of this process, we wish to show that with probability close 
to Io we have Vn � -22. 

The following lemma is key to analyzing the behavior of the process { Vn}. 

Lemma 4 Let A : � ➔ �' A(x) = x + 1 denote adding one, and D: � ➔ R 
D(x) = 2x denote doubling. Suppose a sequence of numbers ao, a1, ... , an is defined 
by specifying ao and the recursion 

with J; E {A,D}. Suppose l{O Si S n-1 :J; =D}I = kand l{O Si S n-1 :J; = 
A} I = n -k, i.e., during the first n iterations of the recursion we encounter doubling 
k times and adding-one n -k times. Then 

Proof Observe that the upper bound on an corresponds to choosing 

fo = ···fn-k-1 =A and fn-k = ··· = fn-1 = D. 

We will show that any other choice of {J;} can be modified to yield a higher value of 
an. To that end suppose {J;} is not chosen as above. Then there exists j E { 1, ... , n -
1} for which fi-1 = D andfi =A.Define {ff} by swapping Ji and fi-1, i.e.,

{A i = j-1
J[= n i=J 

J; else 

and let { a;} denote the sequence that results from {ff}. Then 

a'. = a; for i < j
aj = aj-1 + 1 

aJ+I = 2a1 = 2a1_1 +2

>2aJ-1+l = aJ+!•



3.5 Proof of Theorem 2: The direct part 37 

Since the recursion from j + 1 onwards is identical for the {J;} and' {ff} sequences, 
and since both A and Dare order preserving, a.f

+I 
> aJ+I implies that a�> an. 

By Lemma 4, we can write for any n > m

Vn::; [Vm + (n -m) -Sm,n] 25m ,n 

::; [vm +(n-m)]2Sm ,n 

The process { Vn} takes values in ( -00, 0] and the above bound is effective only when 
Vm + (n -m) is less than 0. This means that for fixed m, there is a limit to how large 
n can be taken before rendering the bound useless. On the other hand, in order to 
obtain the desired rate of exponential convergence one wishes to take n much larger 
than m so that the exponent can be approximated with high probability as 

Fortunately, by applying the same bound repeatedly these two conflicting constraints 
on the choice of n can be alleviated. For example, applying the bound first over [m,k] 
and then over [k, n] we obtain 

(3.12) 

Now, a value of k modestly larger than m can ensure that Vk takes on a sufficiently 
large negative value to ensure that we can choose n » k. This will be shown below. 
However, still one needs to be able to begin with a large enough negative value for 
Vm to initiate the bootstrapping operation. The following result states that this can 
be done. 

Proposition 13 For any given E > 0 and there exists mo ( E) such that for all m 2
mo(E) 

(3.13) 

Accepting the validity of Proposition 13 momentarily, we will show how to com­
plete the proof of Proposition 12. We will prove Proposition 13 in the following two 
subsections. 

Let m 2 mo ( E /3) be arbitrary. Set k = 2m and n = m2 . Then, with probability at 
leastlo -E/3, we have by (3.12) that 

For any given {3 < 1/2, we can choose {3' E ({3, 1/2) such that for m sufficiently 
large we have 

and 

P(Sm,2m > f3'm) 21-E/3 

P(S2m,m2 > {3'(m2 -m)) 2 1-E/3 
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So, for such m we have with probability at least Io - e 

For a non-trivial bound we need to ensure that the term in square brackets is bounded 
away from zero on the negative side. So, we impose the following additional con­
straint on m: 

[-m2mf3' +(m2-2m)] < -1 

which clearly can be met by choosing m large enough. Then, for all m satisfying all 
the constraints above we have 

with probability at least Io 
- e. This, written in terms of n = m2 reads as

V. < 
-2(n-o(n))/3' 

< 
-2n/3

n_ -

where the second inequality holds for n large enough since /31 > /3.

3.5.2 Sealing the process in [O, s] 

The proof of Proposition 13 also contains a bootstrapping argument, but of a differ­
ent type. We first establish a result that "seals" as much of the sample paths of { Zn } 
as possible in a small interval around zero. For ( 2 0 and f 2 0, define 

Lemma 5 For any ( > 0 and e > 0, there exists fo ( (, e) such that for all f 2 f o 

P[.9e(()] 2Io-e. 

Proof Fix ( > 0. Let flo � { CO E fl : limn-too Zn( CO) = 0}. By Prop. 10, P(flo) =
Io. Fix co E flo. Zn( ro) -+ 0 implies that there exists no( ro, () such that n 2 
no (@,() =? Zn (@) s ,. Thus, (.0 E .o/e(s) for some m. So, flo C Ue=I .o/e((). 
Therefore, P(Ue=I 3e(()) 2 P(flo). Since 3e(() t Ub= 1 .o/e((), by the mono­
tone convergence property of a measure, limt--tooP[.9e(()] = P[Ue=I .o/e(()]. So, 
limt--+ooP[.o/e(()] 2 Io . It follows that, for any ( > 0, e > 0, there exists a finite 
fo = fo((,e) such that, for all f 2 fo, P[.o/e(()] 210-e. This completes the proof. 



3.5 Proof of Theorem 2: The direct part 39 

3.5.3 Proof of Proposition 13 

For co E 3'c( () and i 2 £, we have

which implies 

This gives 

Now, we set ( = (o := 2-9
, f3 = f3o := 9 /20, m = (7£/3), and note that ZR ::; 1, to

obtain 

(3.14) 

The bound (3 .11) and Lemma 5 ensure that there exists mo ( £) such that, for all 
m :::, mo(£), (3.14) holds with probability greater than Io - £. Specifically, it suffices
to take m greater than both (7 /4 )no(/30, e/2) and (7 /3 )£0( (o, e/2). 

3.5.4 Complementary remarks 

Theorem 2 was first proved in [2] and the proof of the theorem proved above fol­
lowed that paper closely. The channel polarization result as expressed by Theorem 2 
does not show an explicit dependence on the rate parameter R except for the condi­
tion that R <Io.Rate-dependent refinements of this theorem have appeared in [18],
[8], [ 17] soon after the publication of [2]. For a more recent work on the same sub­
ject, see [7]. To state this refined polarization theorem, let Q: JR-+ [O, 1] denote the
complementary cumulative distribution function for the standard normal distribu­
tion: 

Q(t) = _l_ 1
= 

e-u2;2du. 
v'2n t 

Let Q-1 denote the inverse of Q. Then, the refined result can be stated in the present
notation as follows. 

Theorem 6 For any O ::; R < I(W), the Bhattacharyya random process in polariza­
tion has asymptotic probabilities given by 



40 3 Channel Polarization 

3.6 A side result 

It is interesting that Propositon 9 gives a new interpretation to the symmetric capac­
ity I(W) as the probability that the random process {Zn;n 2 O} converges to zero. 
Here, we use this to strengthen the lower bound in (0.1 ). 

Proposition 14 For any B-DA1C W, we have I(W) + Z(W) 2 1 with equality ifJW 
is a BEC. 

This result can be interpreted as saying that, among all B-DMCs W, the BEC 
presents the most favorable rate-reliability trade-off: it minimizes Z(W) (maximizes 
reliability) among all channels with a given symmetric capacity I(W); equivalently, 
it minimizes I(W) required to achieve a given level of reliability Z(W).

Proof Consider two channels W and W' with Z(W) = Z(W') � zo. Suppose that 
W' is a BEC. Then, W' has erasure probability zo and I(W') = 1 -zo. Consider the 
random processes {Zn } and { Z�}. By the condition for equality in (2.18), the process 
{Zn} is stochastically dominated by {Z�} in the sense that P(Zn :S z) 2 P(Z� :S z) 
for all n 2 1, 0 :S z :S 1. Thus, the probability of {Zn } converging to zero is lower­
bounded by the probability that {Z�} converges to zero, i.e., I(W) 2 I(W'). This 
implies I(W) + Z(W) 2 1. 



Chapter 4 

Polar Coding 

Abstract We show in this section that polar coding can achieve the symmetric ca­
pacity I(W) of any B-DMC W. 

4.1 Plan of chapter 

The main technical task in this chapter will be to prove Prop. 2. We will carry out the 
analysis over the class of Gwcoset codes before specializing the discussion to polar 
codes. Recall that individual GN-coset codes are identified by a parameter vector 
(N,K, d,udc ). In the analysis, we will fix the parameters (N,K,d') while keeping 
URfc free to take any value over :z-N-K_ In other words, the analysis will be over 
the ensemble of 2N-K Gwcoset codes with a fixed (N,K, d'). The decoder in the 
system will be the SC decoder described in Sect. 1.2.2. 

4.2 A probabilistic setting for the analysis 

Let (:J:N x r;yN ,P) be a probability space with the probability assignment 

(4.1) 

for all (uf ,yf) E :z-N x r;yN _ On this probability space, we define an ensemble
of random vectors (U{" ,X{", Yf, O{") that represent, respectively, the input to the
synthetic channel WN, the input to the product-form channel wN , the output of wN 

(and also of WN), and the decisions by the decoder. For each sample point (uf ,yf) E
:zN x r;yN, the first three vectors take on the values U{" (uf ,yf) = uf ,X{" (uf ,yf) =
uf GN, andYf (uf ,yf) = yf, while the decoder output takes on the value O{"(uf ,yf) 
whose coordinates are defined recursively as 

41 
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(4.2) 

for i = 1, ... , N.

A realization u1( E !!£N for the input random vector Uf corresponds to send­
ing the data vector u.121 together with the frozen vector u.121c. As random vectors, the 
data part U .121 and the frozen part U .121c are uniformly distributed over their respec­
tive ranges and statistically independent. By treating U .121c as a random vector over
t£N-K, we obtain a convenient method for analyzing code performance averaged
over all codes in the ensemble (N,K,d). 

The main event of interest in the following analysis is the block error event under 
SC decoding, defined as 

(4.3) 

Since the decoder never makes an error on the frozen part of Uf, i.e., U.121c equals 
U.121c with probability one, that part has been excluded from the definition of the
block error event.

The probability of error terms Pe(N,K,d) and Pe(N,K,d, u.121c) that were de­
fined in Sect. 1.2.3 can be expressed in this probability space as 

Pe(N,K,d) =P(<t), 
Pe(N,K,JZI, U.12f'c) = P(<t I {U.121c = U.12f'c} ), 

(4.4) 

4.3 Proof of Proposition 2 

We may express the block error event as g = u iEd�i where 

is the event that the first decision error in SC decodine; occurs at stage i. We notice 
that 

�i = {(uf,yf) E tt:N x r;yN : ui-I = Of-1(uf,yf),ui =/-hi(yf,Of-1(uf,yf)}

= {(uf,yf) E tt:N x r;yN : ui-I = Of-l(uf,yf),ui =/-h;(yf,ui-1)}
C { (uf,yf) E tt:N X r;yN : Uj =/- hi (yf, u;-1)}
C0t 

where 
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0 L1 {( N .N) (jy"N nJ/N. w(i-l)r.N i-1 I ) < w(i-l)r.N i-1 I 1)}©j= U1,Y1 Ew X;_y . N \Y1,U1 Ui - N \Yl,ul UiE9 

Thus, we have 
P(iff) � L P(0t). 

iEol 

For an upper bound on P( Gt), note that 

We conclude that 

1 

� L 2N WN(/( I uf)
z/(,1( 

=Z(WJjl). 

W(i) r.N i-l 1 1)N \YJ ,u1 Uiffi 
W(i)r.N i-11 )N \Yi ,ul Uj 

P( iff) � L z(wj\ 
iEol 

(4.6) 

(4.7) 

which is equivalent to (1.13). This completes the proof of Prop. 2. The main coding 
theorem of the paper now follows readily. 

4.4 Proof of Theorem 3 

By Theorem 2, for any fixed rate R < I(W) and constant /3 < ½, there exists a se­
quence of sets {dN} such that dN c {1, ... ,N}, ldNI "?:. NR, and 

L Z(wjl) = o(i-Nfl). (4.8) 
iEolN 

In particular, the bound (4.8) holds if dN is chosen in accordance with the polar 
coding rule because by definition this rule minimizes the sum in (4.8). Combining 
this fact about the polar coding rule with Prop. 2, Theorem 3 follows. 

4.5 Symmetry under channel combining and splitting 

Let W: !Z" -+ t!Y be a symmetric B-DMC with !Z" = {O, 1} and t!Y arbitrary. By 
definition, there exists a a permutation :,r1 on t!Y such that (i) :,r1

1 
= :,r1 and (ii) 

W(yll) = W(:1r1(y)I0) for ally E t!Y. Let :7ro be the identity permutation on t!Y. 
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Clearly, the permutations (no, n-1) form an abelian group under function compo­
sition. For a compact notation, we will writex-y to denote nx(y), for x E X' ,y E <!Y. 

Observe that W(ylxEBa) = W(a·ylx) for all a,x E X',y E <!Y. This can be verified 
by exhaustive study of possible cases or by noting that W(ylx EB a) = W((x EB a)· 
ylO) = W(x· (a ·y)IO) = W(a -ylx). Also observe that W(ylxEBa) = W(x ·yla) as EB 
is a commutative operation on X'. 

For xf E X'N, I{ E &N, let 

(4.9) 

This associates to each element of X'N a permutation on t:yN _ 

Proposition 15 If a B-DMC Wis symmetric, then WN is also symmetric in the sense 
that 

(4.10) 

The proof is immediate and omitted. 

Proposition 16 If a B-DMC Wis symmetric, then the channels WN and wJ> ar e 
also symmetric in the sense that 

(4.11) 

(4.12) 

Pr oof Letxf = 
u'( GN and observe that WN (/{ I u'() = TI! 1 

W(yi Ix;) = TI! 1 
W(x; · 

Yi I 0) = WN(xf · /{ I of). Now, let l/( = d( GN, and use the same reasoning to see 
that WN(l/( ·I{ I u'( EBd() = WN((xf EB bf)·(!/( ·I{) I of)= WN(xf ·I{ I of). This 
proves the first claim. To prove the second claim, we use the first result. 

where we used the fact that the sum over uf+
1 

E X'N-i can be replaced with a sum 
over uf+

1 
EB at;_

1 
for any fixed d( since { uf+

1 
EB at;_

1 
: uf+

1 
E X'N-i} = xN-i_
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4.6 Proof of Theorem 4 

We return to the analysis in Sect. 4.3 and consider a code ensemble (N,K, d) under 
SC decoding, only this time assuming that W is a symmetric channel. We first show 
that the error events { 0/} defined by (4.6) have a symmetry property. 

Proposition 17 For a symmetric B-DMC W, the event 6f has the property that 

(4.13) 

for each 1 � i 5c N, (uf ,TJ) E f!CN X r;yN , af E f!CN . 

Proof This follows directly from the definition of 0/ by using the symmetry prop­
erty (4.12) of the channel w;Jl. 

Now, consider the transmission of a particular source vector u.91 and frozen vector 
u.91c, jointly forming an input vector uf for the channel WN. This event is denoted 
below as { Uf = uf} instead of the more formal { uf} x r;yN. 

Corollary 1 For a symmetric B-DMC W, for each 1 � i SN and uf E f!CN , the 
events gi and {Uf = uf} are independent; hence, P(0i) = P(6i I {Uf = uf} ). 

Proof For (uf ,/i) E f!CN x r;yN andxf = uf GN, we have 

P(0i I {Uf = uf}) = L,WN(yf I uf) 10f (uf ,yf) 
yf 

= I,wN(xf ·yf I of) lg;(of,xf ·ri) (4.14) 
yf 

= P(0i I {uf =of}). (4.15) 

Equality follows in (4.14) from (4.11) and (4.13) by taking af = uf, and in (4.15) 
from the fact that {xf ·Ti: Ti E r/J/N} = r;yN for any fixed xf E f!CN. The rest of 
the proof is immediate. 

Now, by (4.7), we have, for all uf E f!CN , 

(4.16) 

and, since ct C U;E.91 0/, we obtain 

P(ct I {uf = uf}) � I, z(w}/l). ( 4.17) 
iE.91 

This implies that, for every symmetric B-DMC Wand every (N,K, Pl, u.91c) code, 
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I N N 
L 2KP(g I {U1 =u1 })

UpfEJCK 

� L z(w)/l). 
iEd 

4 Polar Coding 

(4.18) 

This bound onPe (N,K, d, u.,;1c) is independent of the frozen vector u.,;1c. Theorem4 
is now obtained by combining Theorem 2 with Prop. 2, as in the proofofTheorem 3. 

Note that although we have given a bound onP(gl{U{"' = uf}) that is indepen­
dent of uf, we stopped short of claiming that the error event g is independent of 
U{"' because our decision functions {h;} break ties always in favor ofu; = 0. If this 
bias were removed by randomization, then g would become independent of U{"'. 

4. 7 Further symmetries of the channel w}J)

We may use the degrees of freedom in the choice of d( in (4.12) to explore the 
symmetries inherent in the channel w)/l. For a given (yf,uD, we may select d( 
with a\ = u\ to obtain 

w;U)r.N i-1 j ) w;U)( NG .N oi-1 j 0) 
N \Y1,U1 Ui = N «1 N 'YI, I (4.19) 

So, ifwe were to prepare a look-up table for the transition probabilities {w)/l (yf, ui- 1 I
ui): _0i' E &N,u� E .z- i}, it would suffice to store only the subset of probabilities 
{w)/l(.Yf ,oi-' Io) :_0i' E &'N}. 

The size of the look-up table can be reduced further by using the remaining de-
grees of freedom in the choice ofai,. Let x;f_, � { d( E .z-N: a\ = Oi}, 1 � i � N.
Then, for any 1 � i � N, d( E x;f_,, andYJ E &'N, we have 

(4.20) 

which follows from ( 4.19) by taking u� = Oi on the left hand side. 
To explore this symmetry further, let x;f_ 

1 
· Yi � { d( GN · .-/( : d( E !!C;f_ 

1
}. The 

set x;f_ 1 · Yi is the orbit of Yi under the action group x;f_ 1. The orbits !!C;f_ 1 · Yi 
over variation of Yi partition the space &'N into equivalence classes. Let �f_ 1 be 
a set formed by taking one representative from each equivalence class. The output 
alphabet of the channel w)/l can be represented effectively by the set �f-

1
.

For example, suppose Wis a BSC with&'= {O, 1}. Each orbit x;f_
1 
·Yi has 

zN-i elements and there are z i orbits. In particular, the channel wf1l has effectively
two outputs, and being symmetric, it has to be a BSC. This is a great simplification 
since w}') has an apparent output alphabet size of2N. Likewise, while w)/l has an 
apparent output alphabet size ofzN+ i-I, due to symmetry, the size shrinks to z i. 
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Further output alphabet size reductions may be possible by exploiting other prop­
erties specific to certain B-DMCs. For example, if Wis a BEC, the channels { wJl} 
are known to be BECs, each with an effective output alphabet size of three. 

The symmetry properties of { wJl} help simplify the computation of the channel 
parameters. 

Proposition 18 For any symmetric B-DMC W, the parameters { Z(wJl)} given by

(1.5) can be calculated by the simplified formula

z(wJl) =i- 1 I, 1��1 -?i1jwJl(_yf,o;- 1 1o)wJl(_yf,o;-1I1).
>1 E&;�l 

We omit the proof of this result. 
For the important example of a BSC, this formula becomes 

Z(wJl) = 2N-I L, jwJl(_yf,o;- 1 I0) wJl(_yf,o;- 1 I1). 
yf E&;�l 

This sum for Z(wJl) has 2 i terms, as compared to 2N+ i-l terms in (1.5). 





Chapter 5 

Encoding, Decoding and Construction of Polar 
Codes 

Abstract This chapter considers the encoding, decoding, and construction problems 
for polar coding. 

5.1 Encoding 

In this section, we will consider the encoding of polar codes and prove the part 
of Theorem 5 about encoding complexity. We begin by giving explicit algebraic 
expressions for GN, the generator matrix for polar coding, which so far has been de­
fined only in a schematic form by Fig. 3. The algebraic forms of GN naturally point 
at efficient implementations of the encoding operation.xt' = uf GN. In analyzing the 
encoding operation GN, we exploit its relation to fast transform methods in signal 
processing; in particular, we use the bit-indexing idea of[4] to interpret the various 
permutation operations that are part of GN. 

5.1.1 Formulas for GN 

In the following, assume N = 2n for some n � 0. Let h denote the k-dimensional 
identity matrix for any k � 1. We begin by translating the recursive definition of GN 
as given by Fig. 3 into an algebraic form: 

with G1 =11. 
Either by verifying algebraically that (JN/2 ®F)RN = RN(F ®IN;2) or by ob­

serving that channel combining operation in Fig. 3 can be redrawn equivalently as 
in Fig. 8, we obtain a second recursive formula 

49 
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u, u, 
.ffi-2!-

YI 

u2 U3 
,;-I' 

V2 Y2 

WN/2 

u N/2
UN/2-1 

VN/2 YN/2 
f----EB 

RN 

1/2+1 u2 YN/2+ 

VN/2+1 

/2+2 U4 YN/2+ 2 

VN/2+2 

WN/2 

UN UN VN YN 

WN 

Fig. 5.1 An alternative realization of the recursive construction for W N. 

GN = RN(F ®IN/2)(/z ® GN;2) 
=RN(F®GN;2), (5.1) 

valid for N ;:: 2. This form appears more suitable to derive a recursive relationship. 
We substitute GN/'1. = RN ;2(F ® GN/4) back into (5.1) to obtain 

GN =RN (F® (RN/2 (F®GN/4))) 

= RN (lz ®RN;2) (F®2 ® GN/4) (5.2) 

where (5.2) is obtained by using the identity (AC)® (BD) = (A ®B)(C ®D) with 
A= h B = RN/2 , C = F, D = F ® GN;4. Repeating this, we obtain 

(5.3) 
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where BN � RN (h ®RN;2)(14 ®RN/4) · · · (IN/2 ®R2). It can seen by simple manip­
ulations that 

(5.4) 

We can see that B N is a permutation matrix by the following induction argument. 
Assume that BN/Z is a permutation matrix for some N 2: 4; this is true for N = 4 
since B2 = fz. Then, BN is a permutation matrix because it is the product of two 
permutation matrices, RN and h ® B N ;2. 

In the following, we will say more about the nature of BN as a permutation. 

5.1.2 Analysis by bit-indexing 

To analyze the encoding operation further, it will be convenient to index vectors and 
matrices with bit sequences. Given a vector af with length N = 2n for some n 2: 0, 
we denote its ith element, ai, 1 :S: i :S: N, alternatively as ab , ···bn 

where b1 · · · bn is 
the binary expansion of the integer i - I in the sense that i = I + I]= 1 b j2n-j. Like­
wise, the element Ai;· of an N-by-N matrix A is denoted alternatively as Ab ,---b b' ··-b' 

n, I n

where b1 · · · bn and b� · · · b� are the binary representations of i - I and j - I, respec-
tively. Using this convention, it can be readily verified that the product C = A 0 B
of a 2n-by-2n matrix A and a 2m-by-2m matrix B has elements Cb ,···b b' ···b' =

n+m, l n+m 

Ab , ···bn ,b\ ···b�B bn+ i · bn+m ,b:+
, ---b�+m · 

We now consider the encoding operation under bit-indexing. First, we observe 
that the elements of F in bit-indexed form are given by Fb b' = 1 EB b' EB bb1 for all 
b, b' E { 0, 1}. Thus, F®n has elements 

(5.5) 

Second, the reverse shuffle operator RN acts on a row vector uf to replace the 
element in bit-indexed position b1 · · · bn with the element in position b2 · · · bnb1; that 
is, if vf = uf RN, then Vb 1

. bn 
= Ub2 bn b , for all b1, ... , bn E {O, 1 }. In other words, 

RN cyclically rotates the bit-indexes of the elements of a left operand uf to the right 
by one place. 

Third, the matrix BN in (5.3) can be interpreted as the bit-reversal operator: 
if vf = ufBN, then vb i ···bn 

= Ubn
···b , for all b,, ... ,bn E {0,1}. This statement 

can be proved by induction using the recursive formula (5.4). We give the idea 
of such a proof by an example. Let us assume that B4 is a bit-reversal operator 
and show that the same is true for Bs. Let u1 be any vector over GF(2). Using 
bit-indexing, it can be written as (uooo, uoo1, uo10, uo, 1, u100, u101, u110, u111 ). Since 
u� Bs = u� Rs (h 0 B4 ), let us first consider the action of Rs on u�. The reverse
shuffle Rs rearranges the elements of ui with respect to odd-even parity of their
indices, so u�Rs equals (uooo,uo10,u100,u110,uoo1,uo11,u101,u111). This has two
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4
,1

( ) 4
,1

( ) 
· halves, c1 = uooo,uo10,u100,u110 and d1 = uoo1,uo11,u101,u111 , correspondmg 

to odd-even index classes. Notice that cb 1 b2 = ub 1 b2
o and db 1 b2 

= ub 1 b21 for all 
b1, b2 E { 0, 1}. This is to be expected since the reverse shuffle rearranges the indices 
in increasing order within each odd-even index class. Next, consider the action of 
h ®B4 on (c1 ,df). The result is (c1B4,df B4). By assumption, B4 is a bit-reversal 
operation, so c1 B4 = (coo,c10, co1, c11 ), which in turn equals (uooo, u100, uo10, u110)­
Likewise, the result of df B4 equals (uoo1, u101, uo11, u111 ). Hence, the overall opera­
tion Bs is a bit-reversal operation. 

Given the bit-reversal interpretation of BN, it is clear that BN is a symmetric 
matrix, so Bi =BN. SinceBN is a permutation, it follows from symmetry thatBN1 

=

BN. 
It is now easy to see that, for any N-by-N matrix A ,  the product C = BiABN 

has elements Cb1 
···b b' .. ,bf = A b ···bi b' ... b'. It follows that if A is invariant under bit-

n, 1 n n , n l 

reversal, i.e., if A b i 
··-bn b' "·b' = A bn

"·b i b' .. ,bf for every b1 ' ... 'bn, b'1, ... 'b� E {0, 1 }, 
, I n , n I 

then A = BiABN. Since Bi= BN1, this is equivalent to BNA = ABr. Thus, bit­
reversal-invariant matrices commute with the bit-reversal operator. 

Proposition 19 For any N = 2n, n 2". 1, the generator matrix GN is given by GN =
BNF ®n and GN = F o<mBN where BN is the bit-reversal permutation. GN is a bit­
reversal invariant matrix with 

n 

(GN)b 1 -bn ,b'
i 
- b� = Il(l ffib;ffibn-ib;). 

i=I 

(5.6) 

Proof F 0n commutes with BN because it is invariant under bit-reversal, which 
is immediate from (5.5). The statement GN = BNF'/Jn was established before; by 
proving that F '6!n commutes with BN, we have established the other statement: 
GN = F <gm BN. The bit-indexed form (5.6) follows by applying bit-reversal to (5.5). 

A fact useful for estimation of minimum Hamming distances of polar codes is 
the following. 

Proposition 20 For any N = 2n , n 2". 0, b1, ... , bn E {O, 1 }, the rows of GN and F ®n 

with index b1 · · · bn have the same Hamming weight given by 2wH(b i , ... ,bn ). 

Proof For fixed b1 , ... , bn, the sum of the terms ( GN h
1 •.. b11 ,b� ... b� (as integers) over 

all b�, ... , b� E {0, 1} gives the Hamming weight of the row of GN with index 
b1 · · · bn. This sum is easily seen to be 2wH(b 1 ,···,bn) where 

(5.7) 

is the Hamming weight of (bi, ... , bn)- The proof for pem is obtained by using the 
same argument on (5.5). 
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5.1.3 Encoding complexity 

For complexity estimation, our computational model will be a single processor ma­
chine with a random access memory. The complexities expressed will be time com­
plexities. The discussion will be given for an arbitrary GN-coset code with parame­
ters (N,K, d, UJdc ). 

Let XE(N) denote the worst-case encoding complexity over all (N,K,d,usdc) 
codes with a given block-length N. If we take the complexity of a scalar mod-2 
addition as 1 unit and the complexity of the reverse shuffle operation RN as N units, 
we see from Fig. 3 that XE(N) 5:. N /2+N + 2XE(N /2). Starting with an initial value 
xE(2) = 3 (a generous figure), we obtain by induction that XE(N) S. !NlogN for 
all N = 2n, n 2 1. Thus, the encoding complexity is O(NlogN). 

ti] =U1 XJ 

ii1 = U5 x2 

U3 = U3 X3 

U4 = UJ X4 

iis = u2 X5 

U6 = U6 X6 

U7 = U4 X7 

iis = us Xs 

Fig. 5.2 A circuit for implementing the transformation F'63
. Signals flow from left to right. Each 

edge carries a signal O or 1. Each node adds (mod-2) the signals on all incoming edges from the 

left and sends the result out on all edges to the right. (Edges carrying the signals Ui and x; are not 
shown.) 

A specific implementation of the encoder using the form GN = BNF0n is shown 
in Fig. 9 for N = 8. The input to the circuit is the bit-reversed version of ui, i.e., 
uf = uf Bg. The output is given by xf = u�Fc:3 

= u�Gg. In general, the complexity 
of this implementation is O(NlogN) with O(N) for BN and O(NlogN) for p@n _ 

An alternative implementation of the encoder would be to apply ui in natural 
index order at the input of the circuit in Fig. 9. Then, we would obtain .xf = uf F2'!3 



54 5 Encoding, Decoding and Construction of Polar Codes 

at the output. Encoding could be completed by a post bit-reversal operation: xf =

~SB 8G XI 8 = UI 8· 

The encoding circuit of Fig. 9 suggests many parallel implementation alterna­
tives for p@n : for example, with N processors, one may do a "column by column" 
implementation, and reduce the total latency to logN. Various other trade-offs are 
possible between latency and hardware complexity. 

In an actual implementation of polar codes, it may be preferable to use p@n in 
place of BNFem as the encoder mapping in order to simplify the implementation. In 
that case, the SC decoder should compensate for this by decoding the elements of 
the source vector uf in bit-reversed index order. We have included BN as part of the 
encoder in this paper in order to have a SC decoder that decodes uf in the natural 
index order, which simplified the notation. 

5.2 Decoding 

In this section, we consider the computational complexity of the SC decoding al­
gorithm. As in the previous section, our computational model will be a single 
processor machine with a random access memory and the complexities expressed 
will be time complexities. Let XD(N) denote the worst-case complexity of SC de­
coding over all GN-coset codes with a given block-length N. We will show that 
XD(N) = O(N logN). 

5.2.1 A.first decoding algorithm 

Consider SC decoding for an arbitrary G N-coset code with parameter ( N, K, szl, u .,;1c). 
Recall that the source vector uf consists of a random part u.Sll and a frozen part u.,;1c. 
This vector is transmitted across WN and a channel output yf is obtained with prob­
ability WN(riluf). The SC decoder observes (yf,u.,;1c) and generates an estimate 
cl( of uf. We may visualize the decoder as consisting of N decision elements (DEs ), 
one for each source element ui; the DEs are activated in the order 1 to N. If i E sz1c, 
the element Ui is known; so, the ith DE, when its turn comes, simply sets u; = u; and 
sends this result to all succeeding DEs. If i E sz/, the ith DE waits until it has received 
the previous decisions ui-1, and upon receiving them, computes.Jhe likeli,h,ood ratio.
�J;,.R) 

.. 

,,JT(i) r.N �i-1 JO) L(il(yf,£/-1) � ''N_ \YJ ,u1 
N 1 I wtlVi,ui-111)

and generates its decision as 
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{o "fLU)r.N Ai-I)> 1UA. _ , 1 N \YI , u1 _ 
1- 1, otherwise 

��ix-�\} a es. e comp ��i�7��
h

��g�ri�!1f!��::u��=�t:;� �� 
the complexity of computing the LRs. 

A straightforward calculation using the recursive formulas (2.6) and (2.7) gives 

(5.8) 

and 

(5.9) 

Thus, the calculation ofan LR at lengthN is reduced to the calculation of two LRs at 
length N / 2. This recursion can be continued down to block-length 1, at which point 
the LRs have the form L; 1)(yi) = W(yilO)/W(yil!) and can be computed directly. 

To estimate the complexity ofLR calculations, let XL(k), k E {N,N /2,N /4, ... , 1 }, 
denote the worst-case complexity of computing Lfl (J1, vi-I) over i E (1, k] and 
(Jrt,v;-1) E ,Yk x &; i-l_ From the recursive LR formulas, we have the complex­
ity bound 

(5.10) 

where a is the worst-case complexity of assembling two LRs at length k/2 into an 
LR at length k. Taking x2) (yi) as 1 unit, we obtain the bound 

XL(N) :s; ( 1  + a)N = O(N). (5.1 1) 

The overall decoder complexity can now be bounded as Xn(N) :s; KXI,(N) :s; 
NXL(N) = O(N2 ). This complexity corresponds to a decoder whose DEs do their 
LR calculations privately, without sharing any partial results with each other. It turns 
out, if the DEs pool their scratch-pad results, a more efficient decoder implementa­
tion is possible with overall complexity O(N logN), as we will show next. 
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5.2.2 Refinement of the decoding algorithm 

We now consider a decoder that computes the full set of LRs, { l/) (yf, u;- 1) : 1 :s; 
i :s; N}. The previous decoder could skip the calculation of L Cl) (yf, a;-1) for i E .91c;
but now we do not allow this. The decisions { ui : 1 :s; i :s; N} are made in exactly the 
same manner as before; in particular, if i Ede , the decision Ui is set to the known 
.c 1 dl fL(i)1.N Ai-I)1rozen va ue Ui, regar ess o N \.YJ ,u 1 

To see where the computational savings will come from, we inspect (5.8) and 
(5.9) and note that each LR value in the pair 

is assembled from the same pair ofLRs: 

(L(i) (yN/2 A2i-2 A2i-2) L(i) t.N A2i-2))N/2 I ,u1,o EBu1,e , N/2\YN/2+1,ul,e 

Thus, the calculation of all N LRs at length N requires exactly N LR calculations at 
length N /2.1 Let us split the N LRs at length N /2 into two classes, namely,

(5.12) 

Let us suppose that we carry out the calculations in each class independently, with­
out trying to exploit any further savings that may come from the sharing of LR 
values between the two classes. Then, we have two problems of the same type as 
the original but at half the size. Each class in (5.12) generates a set of N /2 LR cal­
culation requests at length N /4, for a total of N requests. For example, if we let 
�/2 .1 AN/2 AN/2 h . . fr h fi l v 1 

= u
1 0 

EBu
1 e, t e requests ansmg om t e rst c ass are 

, , 

{L(i) (yN /4 A2i-2 IT\ A2i-2) . l < . < N/4} N/4 I ,v1,o wl'i,e · _ l _ , 

{L(i) (yN/2 A2i-2) l < . < N/4}N/4 N/4+1 ' Vi,e : - l -

Using this reasoning inductively across the set of all lengths {N,N /2, ... , 1 }, we 
conclude that the total number ofLRs that need to be calculated is N(l + logN). 

So far, we have not paid attention to the exact order in which the LR calculations 
at various block-lengths are carried out. Although this gave us an accurate count of 
the total number of LR calculations, for a full description of the algorithm, we need 
to specify an order. There are many possibilities for such an order, but to be specific 
we will use a depth-first algorithm, which is easily described by a small example. 

1 Actually, some LR calculations at length N /2 may be avoided if, by chance, some duplications 
occur, but we will disregard this. 
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We consider a decoder for a code with parameter (N,K,d,usz1c) chosen as 
(8, 5, {3, 5, 6, 7, 8}, (0, 0, 0)}. The computation for the decoder is laid out in a graph 
as shown in Fig. 10. There are N(I + logN) = 32 nodes in the graph, each respon­
sible for computing an LR request that arises during the course of the algorithm. 
Starting from the left-side, the first column of nodes correspond to LR requests at 
length 8 ( decision level), the second column of nodes to requests at length 4, the 
third at length 2, and the fourth at length 1 ( channel level). 

Each node in the graph carries two labels. For example, the third node from the 
bottom in the third column has the labels CY1, ih EB u4 ) and 26; the first label indicates 
that the LR value to be calculated at this node is L�2) CY1, fi2 EB u4 ) while the second 
label indicates that this node will be the 26th node to be activated. The numeric 
labels, 1 through 32, will be used as quick identifiers in referring to nodes in the 
graph. 

The decoder is visualized as consisting of N DEs situated at the left-most side of 
the decoder graph. The node with label (y�, u;- 1) is associated with the ith DE, 1 :=:; 
i :=:; 8. The positioning of the DEs in the left-most column follows the bit-reversed 
index order, as in Fig. 9. 

Fig. 5.3 An implementation of the successive cancellation decoder for polar coding at block-length 

N=S. 
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Decoding begins with DE 1 activating node 1 for the calculation of L�1 ) (y�). 
Node 1 in turn activates node 2 for Lil ) (yj). At this point, program control passes 
to node 2, and node 1 will wait until node 2 delivers the requested LR. The process 
continues. Node 2 activates node 3, which activates node 4. Node 4 is a node at the 
channel level; so it computes L)'l (y1) and passes it to nodes 3 and 23, its left-side 
neighbors. In general a node will send its computational result to all its left-side 
neighbors (although this will not be stated explicitly below). Program control will 
be passed back to the left neighbor from which it was received. 

Node 3 still needs data from the right side and activates node 5, which delivers 
Li 1 ) (y2). Node 3 assembles L�1 ) CYT) from the messages it has received from nodes 
4 and 5 and sends it to node 2. Next, node 2 activates node 6, which activates nodes 
7 and 8, and returns its result to node 2. Node 2 compiles its response Li1 ) (yj) and 
sends it to node 1. Node 1 activates node 9 which calculates Li1 ) (y�) in the same 
manner as node 2 calculated L f) (yj), and returns the result to node 1. Node 1 now 
assembles L�1 ) (y�) and sends it to DE 1. Since u 1 is a frozen node, DE 1 ignores the 
received LR, declares u 1 = 0, and passes control to DE 2, located next to node 16. 

DE 2 activates node 16 for Lfl (y�, u1 ). Node 16 assembles Lfl (yf, u1) from 
the already-received LRs Li1 )(yj) and Li1 )(yV, and returns its response without 
activating any node. DE 2 ignores the returned LR since u2 is frozen, announces 
u2 = 0, and passes control to DE 3. 

DE 3 activates node 1 7 for L�3) (y�, uT). This triggers LR requests at nodes 18 
and 19, but no further. The bit u3 is not frozen; so, the decision u3 is made in ac­
cordance with L�3) (y�, UT), and control is passed to DE 4. DE 4 activates node 20 
for L�4

) CYt ui), which is readily assembled and returned. The algorithm continues 
in this manner until finally DE 8 receives L�7

) (y�, uI) and decides its. 
There are a number of observations that can be made by looking at this exam­

ple that should provide further insight into the general decoding algorithm. First, 
notice that the computation of L�1

) (yf) is carried out in a subtree rooted at node 1, 
consisting of paths going from left to right, and spanning all nodes at the channel 
level. This subtree splits into two disjoint subtrees, namely, the subtree rooted at 
node 2 for the calculation of Li1 ) (yj) and the subtree rooted at node 9 for the calcu­
lation of Li1 ) (y�). Since the two subtrees are disjoint, the corresponding calculations 
can be carried out independently (even in parallel if there are multiple processors). 
This splitting of computational subtrees into disjoint subtrees holds for all nodes in 
the graph ( except those at the channel level), making it possible to implement the 
decoder with a high degree of parallelism. 

Second, we notice that the decoder graph consists of butteiflies (2-by-2 complete 
bipartite graphs) that tie together adjacent levels of the graph. For example, nodes 
9, 19, 10, and 13 form a butterfly. The computational subtrees rooted at nodes 9 
and 19 split into a single pair of computational subtrees, one rooted at node 10, the 
other at node 13. Also note that among the four nodes of a butterfly, the upper-left 
node is always the first node to be activated by the above depth-first algorithm and 
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the lower-left node always the last one. The upper-right and lower-right nodes are 
activated by the upper-left node and they may be activated in any order or even 
in parallel. The algorithm we specified always activated the upper-right node first, 
but this choice was arbitrary. When the lower-left node is activated, it finds the 
LRs from its right neighbors ready for assembly. The upper-left node assembles 
the LRs it receives from the right side as in formula (5.8), the lower-left node as 
in (5.9). These formulas show that the butterfly patterns impose a constraint on the 
completion time of LR calculations: in any given butterfly, the lower-left node needs 
to wait for the result of the upper-left node which in turn needs to wait for the results 
of the right-side nodes. 

Variants of the decoder are possible in which the nodal computations are sched­
uled differently. In the "left-to-right" implementation given above, nodes waited 
to be activated. However, it is possible to have a "right-to-left" implementation in 
which each node starts its computation autonomously as soon as its right-side neigh­
bors finish their calculations; this allows exploiting parallelism in computations to 
the maximum possible extent. 

For example, in such a fully-parallel implementation for the case in Fig. 10, all 
eight nodes at the channel-level start calculating their respective LRs in the first 
time slot following the availability of the channel output vector yf. In the second 
time slot, nodes 3, 6, 10, and 13 do their LR calculations in parallel. Note that 
this is the maximum degree of parallelism possible in the second time slot. Node 
23, for example, cannot calculate Li) (yf, u 1 EB u2 EB u3 EB u4) in this slot, because 
u1 EB u2 EB u3 EB u4 is not yet available; it has to wait until decisions u1, u2 , u3 , u4 are 
announced by the corresponding DEs. In the third time slot, nodes 2 and 9 do their 
calculations. In time slot 4, the first decision u 1 is made at node 1 and broadcast 
to all nodes across the graph (or at least to those that need it). In slot 5, node 16 
calculates u2 and broadcasts it. In slot 6, nodes 18 and 19 do their calculations. This 
process continues until time slot 15 when node 32 decides us. It can be shown that, 
in general, this fully-parallel decoder implementation has a latency of 2N � 1 time 
slots for a code of block-lengthN. 

5.3 Code construction 

The original polar coding paper [1] left the polar coding construction problem un­
solved. Only for the BEC, a solution was given. For the general case, a Monte Carlo 
simulation method was suggested. Although the problem looked very formidable, 
rapid progress has been made in this area starting with Mori and Tanaka [10] who 
proposed a density evolution approach but did not address the numerical problems in 
computing the densities with sufficient precision. A major advance was made by Tal 
and Vardy [ 16] who exploited the notions of channel degradation and "up gradation" 
to provide not just approximations but also upper and lower bounds on the channel 
parameters, such as /(wJl) and z(wJl), that are involved in code construction. This 
line of work has been extended in Pedarsani et al. [ 12] where specific bounds on the 
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approximation error were derived. The presentation below follows largely [12] and 
Sa�oglu [5]. 

For polar code construction, we seek an algorithm that accepts as input a triple 
(W,N,K) where Wis the B-DMC on which the code will be used, N is the code 
block-length, and K is the dimensionality of the code and produces as output an 
information set d c { 1, ... ,N} of size K such that LiE-"1 z(w}/l) is as small as 
possible. Finding a good frozen vector UJ'1c should also be included as part of the 
desired output of a code construction algorithm in general. However, if W is a sym­
metric channel then the code performance is not affected by the choice of u_e1c and 
this second issue disappears. The following discussion is restricted to symmetric 
channels and we will exclude finding a good frozen vector from the code construc­
tion problem. We use the abbreviation BMS to refer to binary-input memoryless 
symmetric channels. The output alphabet for a BMS will be assumed finite but the 
methods here applicable to BMS channels with a continuous output alphabet such 
as binary-input additive Gaussian noise channels. 

In principle, the code construction problem can be solved by computing the tran-
sition probabilities of all the channels { W

2
��k : 0 <::: k <::: n, 1 <::: i <::: 2n-k} created 

through the course of the polarization construction, as depicted in Fig. 3 .1. Such a 
computation would use the recursive relations given in Proposition 3 starting with 
w/

1
) = W. Altogether there are 2N - 1 channels in this collection and it may appear 

that this calculation should have complexity O(N) where N = 2n is the code block 
length. Unfortunately, this computation is complicated by the exponentially grow­
ing size of the output spaces of the channels involved. For example, the output of 
the channel w}Jl is the vector y1 ui- I which can take on MN 2i- l possible values if 
W is a channel with M outputs. 

There is an exceptional case where the above recursive calculation is feasible. 
If W is a BEC, each channel in the collection { W

2
��k } is a BEC and the erasure 

probabilities can be calculated using the recursive formulas (2.23) with overall com­
plexity O(N). Although the channels created from a BEC W also appear to have an 
exponentially growing size for their output spaces, after merging equivalent output 
letters, only three letters remain: 0, 1, and erasure. The BEC example suggests that 
merging similar output letters may lead to a low-complexity approximate code con­
struction algorithm for general channels. This is indeed the key idea of the methods 
that will be presented in the rest of this section. 

Before we present the specific methods for polar code construction we need to 
develop some general results about BMS channels. 

5.3.1 A general representation of BMS channels 

Definition 1 A channel W : fZ' -+ r?Y is said to be the sum of channels { w; : 1 <::: i <::: 
M} with weights {Pi: l <::: i <::: M} if the following hold:

• {p; : 1 <:'.'. i <:'.'. M} is a probability distribution
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• The channels entering into the sum have the form

with the output alphabets ?7/2, I :s; i :s; M, forming a partition of the output alpha­
bet <!Y of the original channel: 

M 

<!Y = u ?7/2,
i=l 

• The transition probabilities are related by

W(ylx) = p;�(ylx), whenever y E ?7/2, 1 :S i :s; M. 

We write W = I.;'!
1 

p;� to denote that Wis a sum of channels in this sense. 

Proposition 21 Any EMS channel W: { 0, 1} ➔ <!Y with a.finite output alphabet can 
be written as the sum of BSCs: 

M 
W = L,P;BSC(E;), 

i=l 

where the crossover probabilities E; are between O and 1/2. 

Proof Since W is symmetric, for each output letter y there exists a conjugate letter 
y so that W(ylO) = W(yl 1) and W(yl 1) = W(ylO). Thus, each output letter, together 
with its conjugate y defines a BSC with input alphabet {O, 1} and output alphabet 
{y,y}. Some of these BSCs may have identical crossover probabilities; in that case, 
we merge the BSCs with identical crossover probabilities into a single BSC. Output 
symbols y for which W(ylO) = W(yl 1) (which are effectively erasures) may be split 
into two symbols if necessary to represent them as a BSC with crossover probability 
1/2. 

Example 1 A binary erasure channel W with erasure probability E can be written 
as W = (I - E)BSC(O) + EBSC(I/2). 

It will be convenient to generalize the above definitions to the case where the 
channel output alphabet can be continuous. In this more general case, we may rep­
resent any BMS channel W in the form 

{1/2 
W = Jo f(E)BSC(E)dE

where f is a pdf on [O, 1 /2]. This representation covers the previous one by taking 
f(E) = I.!'!

1 
p;D(E - E;). 

Given the characterization of a BMS channel W as a sum of BSCs, it is easy to 
see that the symmetric capacity I(W) and the Bhattacharyya parameter Z(W) can 
be calculated as 
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{1/2 
l(W) = Jo f(t:)[1 -£(£)] dt:

{1/2 
Z(W) = Jo J(t:)J4t:(l -t:)dt:.

These parameters may alternatively be denoted as 1(/) and Z(f).

5.3.2 Channel approximation 

A given BMS channel W may be approximated for a given purpose by suitably ap­
proximating its characterizing pdf f. In polar coding, typically, we wish to replace 
a given f with a simpler f' while keeping the approximation error, as measured 
by /J(f)-J(f')I or /Z(f)-Z(f')I, small. Since both J(f) and Z(f) are continu­
ous functions off taking values in a closed compact interval (namely, [O, 1 ]), this 
approximation problem can be solved without much difficulty. For our purposes it 
will be sufficient to use the following simple "quantizer" for approximating BMS 
channels. 

Proposition 22 Let L 2 1 be a fixed integer. For i = 0, 1, ... ,L, let Di E [O, 1/2] be
(the unique real number) such that a BSC with crossover probability 8i has sym­
metric capacity 1 - (i/L), i.e., £(8i) = i/L. Let W be a symmetric binary-input
memoryless channel characterized by a PDF f. Let W be the channel

L 

W = LPiBSC(8i) 
i=O 

where 

i=l, ... ,L. 

(The integrals are over [8i-1,8i) except/or the last one which is over [8L-1,8Ll.J 
Then, l(W) :::;; l(W) :::;; l(W) + 1 / L.

Pro�f Since £(8) is an increasing function of 8 in the interval [O, 1/2], we have 
0 = 8o < 81 < • · · < DL = 1 /2. Thus, these points partition [O, 1 /2] into disjoint 
quantization intervals. The first half of the desired inequality is obtained as 

{1/2 
l(W) = Jo /(8)[1 -£(8)]d8

L ("
= L }ii 

1 

J(8)[I -£(8)]d8 
i=I 8;-1

L {8 
2 L }ii 

1 

/(8)[1 -£(8i)]d8 
i=I 8;-1 
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=I(W) 

where the inequality uses the monotone increasing property of £( o) for o E 
[O, 1/2]. To obtain the second half, we use the monotone property again but in the 
reverse direction. 

I(W) :S ± J/ f(o)[I -Jf"(oi-l)]do
i=I 8;-1 

= L,P;[l -(i-1)/L] 
i=I 

= I(W) + I/L. 

We will show that the above type of quantization creates a degraded channel in 
the following sense. 

Definition 2 Let W : :% ➔ � and W' : :% ➔ �' be two channels. We say that W' 
is degraded wrt W if there exists a third channel P : � ➔ �, such that 

W'(y'lx) = I,P (y'ly)W(ylx). 
y 

We write W' � W to indicate that W' is degraded wrt W. 

Proposition 23 Let W be a EMS channel and W be its quantized version as above . 
Then, W� W. 

Proof We may represent the quantizer as a channel (a deterministic one).

Proposition 24 Let Wand W' be two B-DMCs with W � W'. Then, I(W) :S J(W') 
and Z(W) 2 Z(W'). Furthermore, channel degradedness relationship propagates 
through the polarization construction in the sense that 

Corollary 2 Let wJ 1 l and wfl be the channels obtained.from W by one-step po­
larization. Similarly let wPl and wfl be obtained from the quantized channel w. 
Then, 

5.3.3 A code construction algorithm 

We have completed intoducing the basic notions that underly the code construction 
algorithm that follows. Let W be a given BMS and let W be a downward quantization
of W with resolution L as defined above. From the identities
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and 

we obtain 

This shows that the average approximation error after one-step polarization is the 
same as the error before the polarization step. Since the two difference terms on the 
left are non-negative (channel degradedness ) and the difference term on the right is 
bounded by 1 / L, we have 

Thus, the average absolute error is also bounded by 2 / L. The fact that we have a 
bound on the absolute error is essential for the final result., 

While the quantized channel W has at most 2(L + 1) output letters, the channels 
wP) and wfl have many more output letters. The idea of low-complexity polar 
code construction is to quantize the channels w? again before continuing with the 
next step of polarization. The method can be described more precisely by referring 
to Fig. 3.1 again. The quantization procedure replaces the root node by v,r before 
applying the first polarization step. The two channels created at level 1 are now 
wPl and wfl. Before continuing further, these channels are quantized to resolution 
L and polarization is applied to obtain the four channels at level 2. We shall abuse the 
notation to denote by {W

2
�\ : 0 s ks n, 1 sis 2n�k} the channels obtained in the 

course of this quantize-polarize procedure. Each branching point in Fig. 3 .1 causes 
an incremental quantization error. The average quantization error at each node is 
bounded by 1 / L. An inductive argument shows that the overall average absolute 
quantization error at level k of this procedure is bounded as 

k= 1, ... ,n. (5.13 ) 

ln particular, the average absolute quantization error at the last level is bounded by 
n / L. We conclude by Markov's inequality that at least a fraction 1 ~ JnTi of the 
quantities {I(wJl) : 1 sis N} are computed with an error not exceeding Jnli. 
(It is here that having a bound on average absolute error is crucial.) By taking L = 

n2 , one can ensure that, with the exception of at most a fraction 1 / yin, the terms 
{ I(wJl)} are computed with an error not exceeding 1 / yin. This means that with a 
negligible loss in rate we can identify the good coordinates. The overall complexity 
of this calculation is roughly O(L2N) or O(Nn2 ) if Lis chosen as n2 . 
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Assumption on channel inputs 

Throughout we assume that channel input random variable X is 
unifom on {O, 1 }. 
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Capacity with uniform inputs 

The capacity of a binary-input channel W subject to using the 
inputs equiprobably is given by 

I( W) � l(X; Y) 

where the channel input rJndom vziriziblc X is uniform on {O, 1 }.
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!( W) � l(X; Y) 

where the channel input random variable X is uniform on {O, 1 }. 
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l(W) = '"""'!w( lx)lo W(ylx) 
� 2 

y 
g ½ W(ylO) + ½ W(yll)).

Symmetric channels 

If the channel has sufficient symmetries, /( W) equals the true

channel capacity. 
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Cutoff rate, Bhattacharyya parameter 

For binary-input channels with uniform distribution on inputs, the 
O 

'f · 
cutoff rate equals 

2 
Ro(W) = log l + Z(W)

where Z( W) is the Bhattacharyya parameter 

Z(W) = L JW(ylO)W(yll). 
y I 

v,J(vro < 
. I I 
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What is the significance of R0 ( W)? 

J 

► The sequential decoding (Wozencraft, 1957) method achieves
Ro( W) with !ow complexity.
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► The sequential decoding (Wozencraft, 1957) method achieves
R0( W) with low complexity.
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► The sequential decoding (Wozencraft, 1957) method achieves
Ro( W) with low complexity.

► Came to be regarded as "practical capacity" for a while.

► 1::sut k'o( is a 'fla parameter: it can or

destroyed.
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What is the significance of R0 ( W)? 

► The sequential decoding (Wozencraft, 1957) method achieves
Ro( W) with low complexity.

► Came to be regarded as "practical capacity" for a while.

► But Ro(W) is a 'flaky" parameter: it can be created or
destroyed.

}llf' 

► In a sense polarization is a method of boosting Ro to channe!

Setup 
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capacity.

The significance of Z( W) 

Recall the definition: 

Z(W) = L JW(ylO)W(yll). 
y 

► Z( W) is an upper-bound on uncoded bit error rate
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The significance of Z( W) 

Recall the definition: 

Z(W) = L JW(ylO)W(yll). 

► Z( W) is an upper-bound on uncoded bit error rate

► Z(W) = 0 iffthe channel is perfect
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The significance of Z( W) 

Recall the definition: 

Z(W) = L JW(ylO)W(yll). 

► 7( W) is an upper-bound on uncoded bit error rate

► Z(W) = 0 iff the channel is perfect

► W) = 1 iff IS 
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The significance of Z( W) 

Recall the definition: 

Z(W) = L ✓W(ylO)W(yll).

y 

► Z(W) is an upper-bound on uncoded bit error rate

► Z( W) = 0 iff the channel is perfect

► Z( W) = 1 iff the channel is useless

► Easier to track than Ro( W)

The significance of Z( W) 

Recall the definition: 

Z(W) = L ✓w(ylO)W(yll).

y 

► Z( W) is an upper-bound on uncoded bit error rate

► Z( W) = 0 iff the channel is perfect

► Z( W) = 1 iff the channel is useless

► Easier to track than Ro( W) 

► a bound on the error probabilities in successive
cancelation decoding



A fact about /( W) vs Z( W) 

l(W) 

Setup 
000000090 

(} 
Z(W) 

A fact about /( W) vs W) 

1 

l(W) 

', 
! (,J j 

0 

1 

Z(W) 1 

! 
z.,,, 
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Extreme value relations 

For any binary-input channel W, 

and 

/(W)=l iff Z(W)=O iff R0(W)=l 

l(W) = 0 iff Z(W) = 1 iff R0(W) = 0. 

Proof: Given in the next presentation. 

Polarization 

Basic module for a low-complexity scheme 

Combine two copies of W



Polarization 

Basic module for a low-complexity scheme 

Combine two copies of W

Polarization 

Basic module for a low-complexity scheme 

Combine two copies of W

and split to create two bit-channels 

w- : U1 ➔ (Y1, Y2) 

w+ : U2 ➔ (Y1, Y2, U1) 



Polarization 
o•ooo 

The worse channel W 

- L ½ W(\Jl,\
l{-i 

Polarization 
o•ooo 

.,,c�:.,.:,uc� ""'v 

w-: U1-+ (Y1, Y2) 
/u

1

The worse channel W 

- I - ,,

1 



Polarization 

The better channel W' 

-t 

better channel 

'\ 

-::0) 

',{ 

!� 11' '

,\(' 
V 

i 

) ' ' 



Polarization 
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Capacity conserved but redistributed unevenly 

► Conservation:

t(w······) + /( w+ ) = 

Polarization 

Capacity conserved but redistributed unevenly 

► Conservation:

equa !( W) equals O or 1. 



decoding U1 

Polarization 

w 

w 

w 

w 

n1, n2, n3 are i.i.d. Bernoulli 1/2 "noise." 

decoding U1 with equivalent noise model 

w 

w 

w 

w 

, n2, n; are i.i.d. Bernoulli 1/2 "noise." 



identify the channel W

decoding U2 given U1 

known U1 

w 

w 

w 

w 

w 

w 

w 

w 



Polarization 

decoding U3 given U1 and U2

known U1 w 

w 

known U2 w 

n w 

n is Bernoulli 1/2 noise, U1 and U2 are known. 

Polarization 

decoding U3 given V1 and V2 

w 

w 

w 

n w 

n is Bernoulli 1/2 noise, a are known. 



identify the channel w+

w 

w 

w 

w 

Polarization 

-, ,._-.,,. 

,.'!"90Qf> 

known U1 w 

known U3 w 

known U2 w 

w 



decoding U4 given V1, V2, and U3

known U3 -EB 

v,�: �: 

w 

w 

U3 is known, Vi and V2 are known. 

Polarization 

identify the channel W 1
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Size 8 construction 

Demonstration of polarization 

Polarization is easy to analyze when W is a BEC. 

w 

1-E
0 0 

? 

1 
1-E

1 
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Demonstration of polarization 

Polarization is easy to analyze when W is a BEC. 

Setq> 
60000()600 

of polarization 

fl c;;t+-
� cit ,,//

/.,,/' 
-----· 

-
-----

Po I a r i za ti on is easy to analyz�-�en--Wi� a BEC. 

Con:-:.ti t:<:tion 
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Polarization for BEC(½): N = 16 

0.9 
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Polarization for BEC(½): N = 32 
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Polarization for B 64 

Capacity of bit channels 
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Polarization 

Polarization for BEC( ½): N 128 
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Polarization for BEC(½): N = 256 
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Polarization for BEC(½): N - 512-
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Polarization for BEC(½): N = 1024 
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Polarization 
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Polarization and rate of polarization 

l!rola 11ization 

.,; 

Dt::c-:-:b��; Con�;t;;;<::tion 
<...>0000('0000000Cr;ooC 00 

The bit-channel capacities {/(Wt))} polarize: for any J E (0, 1), as 
the construction size N grows 

[ 
no. channels wit

N
h I (wt·>) > 1 - J

l -+ l(W)

and 

[ 
no. channels 

w:
h / (wt > ) < 6 l ---+ 1 _ / ( W)

This result holds with J = 0(2-N13
) for any fixed /3 < 1/2.

Proof: To be given in the next lecture. 

Tu: 
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Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) 

0.0039 U1 

0.1211 U2 

0.1914 U3 � 

0.6836 U4 � 

0.3164 Us 

0.8086 U6 

0.8789 U1 

0.9961 Us 

S<:!tup 
000oov000 

Encoding 
eoo 000000000000000000 00 

Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 8 

0.1211 7 

0.1914 6 

0.6836 4 

0.3164 5 

0.8086 3 

0.8789 2 

0.9961 1 

U1 

U2 

U3 � � 

U4 � 

Us 

u6 

U1 

Ua 

(f :: ,. 1t ,::;-.\C 



Encoding 
eoo 

Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 

0.1211 

0.1914 

0.6836 

0.3164 

0.8086 

0.8789 

0.9961 

S,';tUp 
000C0C00f') 

8 

7 

6 

4 

5 

3 

2 

1 

U1 

U2 

U3 

U4 

Us 

u6 

U1 

data Ua 

Encoding 
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� 

� 

Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 8 

0.1211 7 

0.1914 6 

0.6836 4 

0.3164 5 

0.8086 3 

0.8789 2 

0.9961 1 

�------�----

_.....___.....__ ___ �l-l---+--1-----1 

data U1 --1+1--+-----+-------1 

data U8 

00 
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Polar code example: W = BEC( ½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 8 

0.1211 7 

0.1914 6 

0.6836 4 

0.3164 5 

0.8086 3 

0.8789 2 

0.9961 1 

data 

data 

data 

U1 

U2 

U3 

U4 

Us 

u6 

U1 

Us 

Encoding 
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000000000000060000 00 

Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 8 

0.1211 7 

0.1914 6 

0.6836 4 

0.3164 5 

0.8086 3 

0.8789 2 

0.9961 1 

data U1 

data Us 

-----�------

-----�----

--------�-----!--
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Encoding 
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Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 8 

0.1211 7 

0.1914 6 

0.6836 4 

0.3164 5 

0.8086 3 

0.8789 2 

0.9961 1 

frozen U1 

frozen U2 

frozen U3 

frozen Us 

data Us 

Encoding 
eoo 

O=e:;,:(:dir�g Con-..:trt:<:tion 
60000000000000C000 00 

Polar code example: W = BEC(½), N = 8, rate 1/2 

/(W;) Rank 

0.0039 8 frozen 0 

0.1211 7 frozen 0 

0.1914 6 frozen 0 � 

0.6836 4 data U4 

0.3164 5 frozen 0 

0.8086 3 data u6

0.8789 2 data U1

0.9961 1 data Us

� ,::1 � (} % 
·.\c



Encoding complexity 

Proof: 

► Polar coding transform can be represented as a graph with
N[l log(N)] variables,

Encoding complexity 

Proof: 
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► Polar coding transform can be represented as a graph with
N[l + log( N)] variables,

► The graph has (1 + log(N)) levels with N variables at each
level.



Encoding complexity 

Proof: 

Encoding 
o•o 

► Polar coding transform can be represented as a graph with
N[l + log(N)] variables.

► The graph has {1 + log(N)) levels with N variables at each
level.

► Computation begins at the source level and can be carried out
level by level,

Encoding complexity 

Proof: 

Encoding 
oeo ---=0 

► Polar coding transform can be represented as a graph with
N[l + log(N)] variables.

► The graph has {1 + log(N)) levels with N variables at each
level.

► Computation begins at the source level and can be carried out
level by level.

► Space complexity O(N), time complexity O(N!ogN).



Encoding: an example 

frozen 

frozen 

frozen 

free 

frozen 

free 

Encoding 
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Encoding: an example 

frozen 

frozen 

frozen 

free 

frozen 

free 

free 

free 
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Encoding: an example 

frozen 
l 

frozen 
1 

frozen 
1 

� 

free 
1 l 

� 

frozen 
0 

free 
0 

free 
1 

free 
1 l 

Encoding: an example 

frozen 
1 

frozen 
1 

frozen 
1 1 

� 

free 
1 1 

� 

frozen 
0 

free 
0 

free 
1 

free 
1 1 
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Successive Cancellation Decoding (SCD) 

Proof: Given below. 

SCD: Exploit the x = lala + bl structure

u1 YI 

u2

U3 

U4 

U5 X5 

U5 a2 X5 Y6 

U7 a3 X7 Y1 

Us a4 Xs Ys 



First phase: treat a as noise, decode 

U1 

U2 

U3 

U4 

noise a1 X5 

noise a2 X5 

noise a3 X7 

noise a4 XS 

End of first phase 

b, + 
X4 

U5 + a1 X5 

U6 a2 X5 

U7 Z!" ,j X7 

Us a4 XS 

Decoding 
ooeooooooooooooooo 

( U1, U2, U3, U4) 

Yl 

Y2 

w 
Ys 

w 
Y6 

w 
Y7 

Ys 

Decoding 
000•00000000000000 

Yl 

Y2 

Y3 

w 
Y4 

w 
Ys 

Y6 

Y7 

Ys 



Decoding 
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Second phase: Treat b as known, decode ( u5, u6, u7, us)

U3 
---------------! 

First phase m detail 

U1 

U2 

U3 

U4 

noise a1 X5 

noise a2 X5 

noise a3 X7 

noise a4 Xs 

Ys 

Decoding 
000009000000000000 

Yl 

Y2 

Y4 

Ys 

Y6 

Y7 

Ys 



Equivalent channel model 

b 
""------<· 

X4 

r101se a1 X5 

noise a:, X5 

a3 X7 

a4 X3 

First copy of W

Decoding 
000000000000000000 

Y3 

w 
Y4 

w 
Ys 

Y6 

Y1 

Ys 

Decoding 
oooooooeoooooooooo 



Second copy of W

X6

Third copy of W

Decoding 
000000008000000000 

Decoding 
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Fourth copy of W

noise a4 _____ x_a---1

Decoding on 

U1 
w-

U2 b 
w-

U3 b 
w-

U4 b 
w-

Ya 

Decoding 
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(Y1, Ys) 

(Y2, Y6) 

(y3, .Y7) 

(y4, Ys) 



b = ltlt wl 

U1 

U2 b 

U3 b 

U4 t,) b 

Decoding on W

w-

w-

w-

w-

Decoding 
000000000000•00000 

(Y1, Ys) 

(Y2, Y6) 

(y3, Y7) 

(y4, Ys) 

Decoding 
oooooooooooooeoooo 

) 



Decoding on W

Decodi on w·· 

Compute 

Decoding 
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L--- � w---(Y1, ... ,Ys I u1 = O)
. 

w---(Y1, ... ,Ys I u1 = 1) 



Decoding on W

Compute 

Decoding 
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L--- � w---(Y1, ... ,Ys I u1 = 0)
. 

w---(Yl, ... ,Ys I U1 = 1) 

Set 

Decoding on W

Compute 

L--- � w---(Y1, ... ,Ys I u1 = 0)
. 

w---(Y1, ... 'Ys I U1 = 1) 

Set 

if c---- > q 



Decoding on W

Compute 

Decoding 
ooooooooooooooeooo 

L--- � w---(Yi, ... ,Ys I u1 = O).
w---(yi, ... ,Ys I u1 = 1) 

Set 

Decoding on W

w--

Decoding 
oooooooooooooooeoo 

1--
(Yi, Y3, Ys, .Y7)

==w=-=-==�
(
.Y2,.Y4,.Y6,.Ys) 



Decoding on W

Decoding on W

Compute 

+ 

..... --y-

Decoding 
oooooooooooooooeoo 

L--+ � w--+(y1, ... ,Ys, D1 I u2 = 0)
w--+(y1, ... ,Ys, L/1 I U2 = 1)

. 
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Decoding on W

Compute 

Set 

Decoding on 

Compute 

Set 

L--+ � w--+(yi, · · · ,Y8, U1 I u2 = 0)

w--+(y1, ... ,Y8, D1 I u2 = 1)
. 

L--+ � w--+(yl, · · · ,Y8, U1 I u2 = 0)
w--+(y1, ... ,Ys, D1 I u2 = 1)

·



Decoding on W

Compute 

+ 

Decoding 
oooooooooooooooeoo 

L--+ [:;. w--+(y1, ... ,Ys, D1 I U2 = 0) 
w--+(y1, ... , Ys, D1 I U2 = 1)

. 

Set 

D2 = 
{' 

l else

Complexity for successive cancelation decoding 

complexity of decoding a code of length N



Decoding 
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Complexity for successive cancelation decoding 

► Let CN be the complexity of decoding a code of length N

► Decoding problem
of N/2 for 

N for W reduced to two 

and w+

Decoding 
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Complexity for successive cancelation decoding 

► Let CN be the complexity of decoding a code of length N

ng 

► Decoding problem of size N for W reduced to two decoding
problems of size N /2 for w- and w+

for some constant k 

= 2 + kN



Decoding 
0000000000000000•0 

Complexity for successive cancelation decoding 

► Let CN be the complexity of decoding a code of length N

► Decoding problem of size N for W reduced to two decoding
problems of size N /2 for w- and w+

► So

for some constant k

► This gives CN = Nlog N) 

Performance of polar codes 

Proof: Given in the next presentation. 

Decoding 
00000000000000000• 



Construction complexity 

Construction 

•o 

Giv'en an . t:eil?<ilf }, a polar cdde dm b�.r;o!$�t�w:te
:�( typoly(l�g( N)}} ti�e f:��t ��h. e� u,nder\SCD tfie�pe;f6jma nee 
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Proof: Given in the next presentation. 

Polar coding summary 

Construction 

o• 

Given W, N = 2n , and R < l(W), a polar code can be constructed l 
. J such that 1t has • 

► construction complexity 0( Npoly(/og( N)) ), l



Polar coding summary 

Given W, N = 2n , and R < l(W), a polar code can be constructed� 
such that it has 1

► construction complexity O{Npoly(/og(N))),

► encoding complexity :::::: N log N,

Polar coding summary 

Construction 

o• 

Given W, N = 2n , and R < l(W), a polar code can be constructed ,
such that it has I 

' 
ij 

I 
I 

► construction complexity O{Npoly(/og(N))),

► encoding complexity � N log N,

► successive-cancellation decoding complexity ;.:: N log N,



Polar coding summary 

Given W, N = 2n , and R < !( W), a polar code can be constructed 
such that it has 

► construction complexity 0( Npoly(/og( N)) ),
► encoding complexity � N log N, I ► successive-cancellation decoding complexity � N log N,

► frame error probability F\( N, R) = o (2 v'IV+o( ,/iVJ )- i 
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Given two copies of a binary input channel W: lF2 --+ Y 



Given two copies of a binary input channel W: lF2 ----+ Y 

e Set U1 w Y1 
X1 = U1 + U2 

X2 = U2 

U2 w 

with U1, U2 i.i.d., uniform on lF2. 

Given two copies of a binary input channel W: lF2 ----+ Y 

o Set w 

w 

with U1, U2 i.i.d., uniform on lF2. 

@ This induces two synthetic channels 



Given two copies of a binary input channel W: lF2 ---+ Y 

• Set
X1 = U1 + U2 

X2 = U2 

with U1, U2 i.i.d., uniform on lF2. 

U1 

U2 

w 

w 

• This induces two synthetic channels w-: JF2 ---+ Y2 and
w+ : F2 , Y2 x F2.

Given two copies of a binary input channel W: lF2 ---+ Y 

• Set U1 w 

X1 = U1 + U2 

X2 = U2 

U2 w 

with U1, U2 i.i.d., uniform on lF2. 

• This induces two synthetic channels w-: JF2 ---+ Y2 and
W ...... = y2 117 • :1.t12 ·······➔ X.c2. 

• How come U1 appears at the output of w+? Are we being
cheated?

Y1 

Y2 

Y1 

Y2 

Tu 



Consider successively decoding U1, U2, ... , UN from Y 
(a) with a genie-aided decoder:

[Ji = </>1(Y)

lh = </>2(Y, U1)
A 

2U3 = ¢3 ( Y, U )

Consider successively decoding U1, U2, ... , UN from Y 

(a) with a genie-aided decoder: (b) a Standalone decoder:

U1 = ¢1(Y)

U2 = ¢2( Y, U1)

V3 = ¢3( Y, u2
)

VS 

U1 = ¢1(Y)

U2 = </>2(Y, Vi)
A A 

2U3 = <p3 ( Y, U )



Consider successively decoding U1, U2, ... , UN from Y

(a) with a genie-aided decoder: (b) a Standalone decoder:

D1 = ¢1(Y)

U2 = ¢2( Y, U1)
V3 = ¢3( Y, u2 ) vs 

D1 = ¢1 ( Y)

U2 = ¢2(Y, U1)
V3 = ¢3 ( Y, )

If the genie-aided decoder makes no errors, then, the standalone 
decoder makes no errors. 

Building block:'1:'pccessi�e decoding 

Consider successively decoding U1, U2, ... , UN from Y

(a) with a decoder: (b) a Standalone decoder:

D1 = ¢1(Y) 

U2 = ¢2( Y, U1) 
V3 = ¢3 ( Y, u2 ) vs 

D1 = ¢1(Y)

D2 = ¢2 ( Y, LJi)

U3 = <p3( Y, )

). 

If the genie-aided decoder makes no errors, then, the standalone 
decoder makes no errors. The block error events of the two 
decoders are the same. 



, .. , ,,,, ,,:; 

suece$$ive decoding 

Consider successively decoding U1, U2, ... , UN from Y

(a) with a genie-aided decoder: (b) a Standalone decoder:

[Ji= ¢1(Y)

lh = ¢2( Y, U1)
A 

2 1/3 = 'P3 ( y, U )
vs 

Lh = 1>1(Y)

lh = ¢2( Y, LJ1)
Lh = ¢3( Y, LJ2 )

If the genie-aided decoder makes no errors, then, the standalone 
decoder makes no errors. The block error events of the two 
decoders are the same. As long as the block error probability of 
the genie-aided decoder is shown to be small, we are not cheated. 

. �f{i�!•:�;j ��{\ 

Potarization E�arr,ple: ErHsure channel 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1-p, Y =?
otherwise. 



'Pol�rization Example: 
i" ,' ' .··. 

' 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1- p, Y =? 
otherwise 

.& w- has input U1, output ( Yi , Y2) =

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1- p, Y =? 
otherwise. 



Polariz1tion Exc1mple: Era!urerchann�I 
": . .  , ' '" 

' 
' ,,,,, 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1 - p, Y =? 

otherwise. 

Pblarization Example: 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1 - p, Y =7 

otherwise. 



' ' 

Polarization Exampl�: 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1- p, Y =? 
otherwise. 

o w- has input U1, output ( Y1, Y2) = ( ? , ? ) 

, ' ' " , 

Pol�ri:zatidn �xample: Erasure channel 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1- p, Y =? 
otherwise. 

• w- is a BEC(2p - p
2).



Suppose Wis a BEC(p), i.e., Y = X with probabilty 1-p, Y =? 
otherwise. 

e w- is a BEC{2p -p
2 ). 

o w+ has input U2 , output ( Y1, Y2 , U1) =

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1-p, Y =? 
otherwise. 

o w- is a BEC{2p - p
2 ).

@ w+ has input U2, output (Y1, Y2, U1) = (U1 + U2, U2, U1)



Suppose Wis a BEC(p), i.e., Y = X with probabilty 1 - p, Y =? 
otherwise. 

� w- is a BEC(2p - p
2 ). 

� w+ has input U2, output ( Y1, Y2, U1) = ( ? , U2, U1) 

,/ 
' ,' 

\Rplariz�tion §:xam.plet Erasure channel 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1 - p, Y =? 
otherwise. 

at w- is a BEC(2p - p
2 ). 

o w+ has input U2, output ( Y1, Y2, U1) = ( U1 + U2, ? , U1)



·· Polarization;;Example:

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1 - p, Y =? 
otherwise. 

o w- is a BEC(2p - p2 ).

o w+ has input U2, output (Yi, Y2, U1) = ( ? , ? , U1) 

Polaritatidr1 Example: Erasu�{Channel 

Suppose Wis a BEC(p), i.e., Y = X with probabilty 1 - p, Y =? 
otherwise. 

o w- is a BEC(2p - p
2).

o w+ is a BEC(p2).



Suppose Wis a BEC(p), i.e., Y = X with probabilty 1- p, Y =? 
otherwise. 

• w- is a BEC(2p - p
2 ).

o w+ is a BEC(p2 ).

o We already begin to see some extremalization: w+ is better
than W, while w- is worse.

Properties of W 1-, (w-, w+ ): 

w 

w 



Properties of W r-+ ( w-, w+ ): 

I( w-) = I( U1 ; Y1 Y2) U1 

I ( w+ ) = I ( U2 ; Y1 Y2 U1) 

Properties of W r-+ ( w-, w+ ): 

I( w-) = I( U1 ; Y1 Y2) U1 

I ( w+ ) = I ( U2 ; Y1 Y2 U1) 

l(W-) + l(W+) = l(U1 U2 ; Y1 Y2) u2 __ _ 

w 

w 

w 

w 



Properties of W 1---+ (W-, w+): 

I ( w-) = I ( U1; Y1 Y2) U1 

I ( w+) = I ( U2 ; Y1 Y2 U1) 
!( w-) + !( w+) = !( U1 U2 ; Y1 Y2) U2 --.i

·>: ' '

= /(X1X2; Y1 Y2) 

Building block; 

Properties of W 1---+ (w-, w+): 

I( w-) = !( U1; Y1 Y2) U1 ----

w 

w 

w

!( w+) = !( U2 ; Y1 Y2 U1) 
,___ _ __. 

!( w-) + !( w+) = !( U1 U2; Y1 Y2) U2 ---
= /(X1X2; Y1 Y2) 

i» ½t(w-) + ½t(w+) = t(W). 

w 



Properties of W f----+ (W-, w+):

I( w-) = !( Ui; Y1 Y2) U1 ---i w 

I ( w+) = I ( U2; Y1 Y2 U1 )
L-------' 

!( w-) + !( w+) = !( U1 U2; Y1 Y2)
= !(X1X2; Y1 Y2) 

• ½t(w-) + ½t(w+) = t(W).

@ /(W+)::::: /(W)

Properties of W f----+ (W-, w+):

I( w-) = I( U1; Y1 Y2) U1 

!( w+) = !( U2; Y1 Y2 U1)

t(w-) + t(w+) = !(U1U2; Y1 Y2) U2 ---i

= !(X1X2; Y1 Y2) 

e ½t(w-) + ½t(w+) = t(W).

e /(W+)::::: /(W)::::: /(W-). 

w 

w 

w 



Properties of W 1--t ( w-, w+ ): 

o ½l(W-)+½l(W+ )=l(W).
e J( w+ ) 2:: J( W) 2:: J( w-).

Properties of W 1--t (W-, w+ ): 

o ½J(W-)+½l(W+ ) = J(W).

e !(W+ ) 2:: /(W) � !( ).



Properties of W i-+ ( w-, w+ ):

@I ½t(w-)+½t(w+) = t(W). 

@ l(W+) 2: !(W) 2: t(w-). !(W+ ) - !(W) = !(W) - t(w-) 

Properties of W i-+ (w-, w+ ): 

• ½t( w-) + ½'( w+) = t( W).
� I( w+) 2: t( W) 2: t( w-).
o 'Guaranteed progress' unless

already extremal.

1 

4 

0 1 

0 1 



Properties of W r-+ ( w-, w+): 

• ½J(W-)+½l(W+) = J(W). 
• J( w+) ::::: J( W) ::::: /( w-).
Q 'Guaranteed progress' unless

already extremal.
@ ll(W±)-J(W)I < 6 implies

I ( W) \t ( E, 1 - E), 

with E(6)-----+ 0 as 15-----+ 0. 
0 1 

Notation: h(p) = -p log2 p -(1 -p) log2(1 -p), denotes the 
binary entropy function. 
Define p * q := p(l -q) + (1 -p )q; handy when expressing the 
distribution of the mod-2 sum of independent binary RVs. 



Notation: h(p) = -p log2 p - (l - p) log2(1 - p), denotes the

binary entropy function. 

Define p * q := p(l - q) + (1 - p)q; handy when expressing the 
distribution of the mod-2 sum of independent binary RVs. 

If (X1, Y1) and (X2, Y2) are independent, X1 and X2 are binary, 
H(X1IY1) = h(p1), and H(X2JY2) = h(p2), then, 

H(X1 + X2J Y1 Y2) ::::: h(p1 * P2)-

Gµaranteed progress 

Notation: h(p) = -p log2 p - (l - p) log2(1 - p), denotes the

binary entropy function. 
Define p * q := p(l - q) + (1 - p)q; handy when expressing the

distribution of the mod-2 sum of independent binary RVs. 

lf(X1, Y1) and (X2, Y:2} are independent, X1 and X2 are binary, 
H(X1JY1) = h(p1), and H(X2IY2) = h(P2), then, 

H(X1 + X2J Y1 Y2) ::::: h(p1 * P2)-



If I( W) = 1 - h(p), then I( w-) ::; 1 - h(p * p), and thus 
J(W) - l(W-) � h(p * p) - h(p). 

· G u3fa ntee� p'rogress

If I ( W) = 1 - h(p), then I ( w-) ::; 1 - h(p * p), and thus 
l(W) - l(W-) � h(p * p) - h(p). 

From /(W) = 1- h(p) we find H(X;IY;) = h(p). Consequently, 

/( w-) = /( U1; Y1 Y2) 
= 1- H(U1IY1 Y2) 
= 1- H(X1 + X2I Y1 Y2) 
::; 1 - h(p * p) □



,Guaranteed progress 

For every E > 0, there exists 8 > 0 such that 

implies 

Recall the polar construction: 



Recall the polar construction: 

• Duplicate W and obtain w­

and w+ .

Recall the polar construction: 

• Duplicate W and obtain w­

and w+ .

• Duplicate w- (and w+ ),



Recall the polar construction: 

• Duplicate W and obtain w­

and w+ .

• Duplicate w- (and w+ ),

• and obtain w-- and w-+
(and w+- and w++ ).

Recall the polar construction: 

• Duplicate W and obtain w­

and w+ .

• Duplicate w- (and w+ ),

• and obtain w-- and w-+ 

(and w+- and w++).

o Duplicate w-- (and w-+,
w+-

I 
w++ ) and obtain 

w--- and w--+ (and 
w-+-, w-++ , w+--, 
w+-+, w++-, w+++ ). 



Recall the polar construction: 

fl Duplicate W and obtain w­

and w+ . 

fl Duplicate w- (and w+), 

� and obtain w-- and w-+

(and w+- and w++). 

fl Duplicate w-- (and w-+, 

w+-, w++) and obtain 
w--- and w--+ (and 
w-+-, w-++, w+--, 

w+-+, w++-, w+++). 

At the nth level into this process we have transformed N = 2n uses 
of the channel W to one use each of the 2n channels 

The meaning of polarizatoin is that the 2n quantities 

are all close to O or 1 except for a vanishing fraction (as n grows). 



• Organize the synthetic channels as a tree.

• Organize the synthetic channels as a tree.

• Pick a random path climbing the tree

according to fair coin flips.

This path uniformly samples

the nodes at any level n.

rY 

w+++ 

w++­

w+-+ 

w+-­

w-++ 

w-+­

w--+ 

w---

2 

w+++ 

w++­

w+-+ 

w+-­

w-++ 

w-+­

w--+ 

w---



o Organize the synthetic channels as a tree.
o Pick a random path climbing the tree

according to fair coin flips.
This path uniformly samples
the nodes at any level n.

o The / (-) sequence we
encounter satisfies
E [ f 11+ 1 I lo, ... , In] = In.

o Organize the synthetic channels as a tree.

o Pick a random path climbing the tree
according to fair coin flips.
This path uniformly samples
the nodes at any level n.

@ The /(-) sequence we
encounter satisfies
E[l11+1 \ !o,---,ln]= In.

o Thus, the differences
Jn = ln+l - /11 are zero
mean, uncorrelated random
variables.

w+++ 

w++­

w+-+ 

w+-­

w
-

++ 

w
-

+
-

w--+ 

w---

w+++ 

w-++ 

w-+
­

w--+ 

w---



n-1 n-1 

0 1 2 Un - fo) 2 
= (), Jk r = ), J;A 

k=O i,k=O 

n-1 n-1 

-> 1 2': Un - lo) 2 
= (I: Ar = L J;Jk 

n-1 

k=O i,k=O 

-> Thus 1 2': L E[Jf].
k=O 



n-1 n-1
@ 1 2: Un - lo)2 

= (I: Jk r = L J;A

n-1
k=O i,k=O 

o Thus 1 2: L E[Jf].
k=O 

o So, E[J;] -----+ 0, thus, for any r5 > 0, Pr(IJn l > <5)-----+ 0.

PolariZation: why] . 

n-1 n-1
@ 12: Un - lo)2 

= (I:A)
2 

= L J;A

n-1
k=O i,k=O 

o Thus 1 2: L E[Jf].
k=O

@ So, E[J;] -----+ 0, thus, for any r5 > 0, Pr(IJn l > <5)-----+ 0.

@ By 'guaranteed progress property' the event {IJn l > <5}
includes the event {/n E (E, 1- E)}.



n-l n-l

e 1 2: Un - Io)
2 = (� Jk r = L Ji A

n-l

k=O i,k=O 

e Thus 1 2: L E[J}].
k=O 

0 So, E[J;] -----+ 0, thus, for any c5 > 0, Pr(IJn l > c5)-----+ 0. 

@ By 'guaranteed progress property' the event {IJn l > c5} 
includes the event {In E (E, 1- E)}. 

@ Thus the fraction paths for which In E ( E, 1 - E) approaches 
zero as n gets large. Done! Thanks: H.A. Loeliger 

e We have shown that lim n Pr{ In E ( E, 1 - E)} = 0. 



e We have shown that limn Pr{ln E (E, 1- E)} = 0. 

e Together with E[ln] = I)( W) this implies 

Pr(/n :2 1 - E)--+ I( W) and Pr(/n � E)--+ 1 - I( W). 

rt We have shown that limn Pr{ In E ( E, 1 - f)} = 0. 

G Together with E[ln] = I)( W) this implies 

Pr(/n :2 1- E)--+ l(W) and Pr(/n � E)--+ 1- l(W). 

e Even stronger statements can be made by appealing to the 
martingale convergence theorem: 

Pr{lim In = 1} = I( W) and Pr{lim In = 0} = 1 - I( W). 
n n 



o We have seen that polarization takes place.

·Polarization•··speed

i> We have seen that polarization takes place.

o But how fast? Fast enough to arrest error propagation?



o We have seen that polarization takes place.

o But how fast? Fast enough to arrest error propagation?

® Introduce the Bhattacharyya parameter

Z(W) = L JW(y\O)W(y\1) 
y 

as a companion to /(W). Note that this is an upper bound on 
probability of error for uncoded transmission over W. 

l(W) = 1- H(X\Y) 

= L W(y)[l - H(X\Y = y)] 
y 

= L W(y)[l - h(W(O\y))] 
y 



A useful representation 

J(W) = 1- H(XI Y) 

= L W(y)[l - H(XIY = y)] 
y 

= L W(y)[l - h(W(OJy))] 
y 

Similarly 

Z(W) = L JW(yJO)W(yJl) 
y 

= L W(y)J4W(OJy)W(1Jy) 
y 

= L W(y)J4W(OJy)(l - W(OJy)) 
y 

l(W) = 1- H(XIY) 

= L W(y)[l - H(XIY = y)]
y 

= LW(y)[l-h(W(OJy))] 
y 

Similarly 

Z(W) = L JW(yJO)W(yJl) 
y 

= L W(y)J4W(OJy)W(1Jy) 
y 

= L W(y)J4W(OJy)(l - W(OJy)) 
y 

So 

!( W) ........ E[I -- h(Li)] 
Z( W) -::: Ehl 411(1 ..... 11)] 



/(W) = 1- H(XIY) 

= L W(y)[l - H(XIY = y)] 
y 

= L W(y)[l - h(W(Oly))] 
y 

Similarly 

Z(W) = L JW(ylO)W(yll) 
y 

= L W(y)J4W(Oly)W(lly) 
y 

= L W(y)J4W(Oly)(l - W(Oly)) 
y 

!f Polarization speed

So 

!(W) = E[l 
�--------,--

W) ,, E[J41'.1(1 - L'.1)]

Consequently (t(W),Z(W)) 
belongs to the Convex hull of 
the curve 

{ (1 - h(5), J45(1 - 5)) 
8 E [O, 1]} 

Z(W) 



Properties of Z( W): Z(W) 

Properties of Z( W): Z(W) 

0 Z(W) ,:::j O iff /(W) ,::::j 1.



Properties of Z( W): 

@ Z(W),:::; 0 iff /(W),:::; 1. 

o Z(W),:::; 1 iff /(W),:::; 0.

. . 

·Polarrz�ti'qn. sijeed

Properties of Z( W): 

Q Z(W),:::; 0 iff /(W),:::; 1. 

g Z(W),:::; 1 iff /(W),:::; 0. 

o ),,=Z(W)2
. 

Z(W) 

Z(W) 



Properties of Z( W): 

� Z{W) � 0 iff /(W) � 1.

.w Z(W) � 1 iff J(W) � 0. 

� ) =

W). 

Z(W) 

Since Z( W) upper bounds on probability of error for uncoded 
transmission over W, we can choose the on the basis 

of Z( W). The sum of the Z's of the chosen channels will upper 

bound the block error probability. Good reason to study the 
polarization speed of Z. 

0 Recall the channels 

organized in a tree. 

w+++ 

w+-­

w-++ 

w-+­

w--+ 

w---



· ppl�rization �peed

ii Recall the channels 

organized in a tree. 

G Let Zo, Z1, ... be the Z(-) 
values we encouter we climb 

the tree. 

o Recall the channels

organized in a tree.

o Let Zo, Z1, ... be the Z(-)
values we encouter we climb

the tree.

0 We know that

P(Zn ---+ 0) = /( W).

w+++ 

w++­

w+-+ 

w-++ 

w-+­

w--+ 

w+++ 

w++­

w+-+ 

w-++ 

w-+­

w--+ 



Polaritation $peed 

@ Recall the channels 
organized in a tree. 

@ Let Zo, Z1, ... be the Z(-) 
values we encouter we climb 
the tree. 

o We know that
P(Zn

-+ 0) = l(W).

0 We want to show that when
Zn -+ 0 it does so fast.

w+++ 

w++­

w+-+ 

w-++ 

w-+­

w--+ 

@ It is more convenient to work with Vn = log2 Zn. This takes 
values in (-oo, O], We already know that Vn -+ -oo with 
probability /( W), and want to show that it goes to -oo fast 
when it does. 



Polarizet:ion speecl 

o It is more convenient to work with Vn = log2 Zn , This takes
values in (-oo, 0], We already know that Vn -+ -oo with
probability /(W), and want to show that it goes to -oo fast
when it does.

o Vn's obey

Vn+l = 2Vn 

Vn+l � Vn + 1 

for a 'plus' move 

for a 'minus' move 

o It is more convenient to work with Vn = log2 Zn , This takes
values in ( -oo, 0], We already know that Vn -+ -oo with
probability /( W), and want to show that it goes to -oo fast
when it does.

o Vn's obey

Vn+l = 2Vn 

Vn+l � Vn + 1 

for a 'plus' move 

for a 'minus' move 

o E.g., starting with Vm = -20, and sequence moves: -, -, +,

-, -, +, +, -, we will see a sequence dominated by

-20,



o It is more convenient to work with Vn = log2 Zn - This takes
values in (-oo, OJ. We already know that Vn ---+ -oo with
probability /( W), and want to show that it goes to -oo fast
when it does.

e Vn's obey 

Vn+l = 2Vn 

Vn+l � Vn + 1 

for a 'pl us' move 

for a 'minus' move 

0 E.g., starting with Vm = -20, and sequence moves: -, -, +, 

-, -, +, +, -, we will see a sequence dominated by 

-20, -19,

o It is more convenient to work with Vn = log2 Zn - This takes
values in (-oo, O], We already know that Vn ---+ -oo with
probability /(W), and want to show that it goes to -oo fast
when it does.

o Vn's obey 

Vn+l = 2Vn 

Vn+l � Vn + 1 

for a 'plus' move 

for a 'minus' move 

e E.g., starting with Vm = -20, and sequence moves: -, -, +, 

-, -, +, +, -, we will see a sequence dominated by 

-20, -19,-18,



@ It is more convenient to work with Vn = log2 Zn. This takes 
values in ( -oo, O]. We already know that Vn ---+ -oo with 
probability /( W), and want to show that it goes to -oc fast 
when it does. 

o Vn's obey 

Vn+l = 2Vn 

Vn+l:::; Vn + l 

for a 'plus' move 

for a 'minus' move 

@ E.g., starting with Vm = -20, and sequence moves: -, -, +.

-, -, +. +, -, we will see a sequence dominated by

-20, -19,-18,-36,

. f'ol�.rization speed 

@ It is more convenient to work with Vn = log2 Zn. This takes 
values in ( -oo, OJ. We already know that Vn ---+ -oo with 
probability /( W), and want to show that it goes to -oo fast 
when it does. 

Q Vn's obey 

Vn+l = 2Vn 

Vn+l:::; Vn + l 

for a 'plus' move 

for a 'minus' move 

@ E.g., starting with Vm = -20, and sequence moves: -, -, +,

-, -, +, +. -, we will see a sequence dominated by 

-20, -19,-18,-36,-35,



e It is more convenient to work with Vn = log2 Zn. This takes 
values in ( -oo, OJ, We already know that Vn ---+ -oo with 
probability / ( W), and want to show that it goes to -oo fast 
when it does. 

Q Vn's obey 

Vn+l = 2Vn 

Vn+l :S Vn + 1 

for a 'plus' move 

for a 'minus' move 

@ E.g., starting with Vm = -20, and sequence moves: -, -, +,
-, -, +, +, -, we will see a sequence dominated by

-20, -19,-18,-36,-35,-34,

Polarization speed 

/ill It is more convenient to work with Vn = log2 Zn. This takes 
values in (-oo, O], We already know that Vn ---+ -oo with 
probability / ( W), and want to show that it goes to -oo fast 
when it does. 

o Vn's obey 

Vn+l = 2Vn 

Vn+l :S Vn + 1 

for a 'plus' move 

for a 'minus' move 

o E.g., starting with Vm = -20, and sequence moves: -, -, +,

-, -, +, +, -, we will see a sequence dominated by

-20, -19,-18,-36,-35,-34,-68,



• It is more convenient to work with Vn = log2 Zn. This takes
values in ( -oo, 0], We already know that Vn ---+ -oo with
probability /(W), and want to show that it goes to -oo fast
when it does.

• Vn's obey 

Vn+l = 2Vn 

Vn+l :'.S; Vn +l

for a 'plus' move 

for a 'minus' move 

• E.g., starting with Vm = -20, and sequence moves: -, -, +,

-, -, +, +, -, we will see a sequence dominated by 

-20, -19,-18,-36,-35,-34,-68,-136,

• It is more convenient to work with Vn = log2 Zn. This takes
values in ( -oo, 0], We already know that Vn ---+ -oo with
probability /( W), and want to show that it goes to -oo fast
when it does.

• Vn's obey 

Vn+l = 2Vn 

Vn+l :'.S; Vn + 1

for a 'plus' move 

for a 'minus' move 

• E.g., starting with Vm = -20, and sequence moves: -. -, +.

-, -, +, +, -, we will see a sequence dominated by

-20, -19,-18,-36,-35,-34,-68,-136,-135,



lliil It is more convenient to work with Vn = log2 Zn. This takes 
values in (-oo, 0], We already know that Vn -------+ -oo with 
probability /(W), and want to show that it goes to -oo fast 
when it does. 

lliil Vn's obey 

Vn+I = 2Vn 

Vn+l :S: Vn + 1 

for a 'plus' move 

for a 'minus' move 

o E.g., starting with Vm = -20, and sequence moves: -, -, +,

-, -, +, +, -, we will see a sequence dominated by

-20, -19,-18,-36,-35,-34,-68,-136,-135, ...
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lliil It is more convenient to work with Vn = log2 Zn. This takes 
values in (-oo, 0], We already know that Vn -------+ -oo with 
probability /( W), and want to show that it goes to -oo fast 
when it does. 

lliil Vn's obey 

Vn+l = 2Vn 

Vn+l :S: Vn + 1 

for a 'plus' move 

for a 'minus' move 

@ E.g., starting with Vm = -20, and sequence moves: -, -, +,

-, -, +, +. -, we will see a sequence dominated by

-20, -19,-18,-36,-35,-34,-68,-136,-135, ...

e The amounts the 'minus' moves change the V values are 
negligible compared to the changes made by the 'plus' moves. 



e To the first approximation, Vn process behaves like 

V
n+l = 2V

n 

V
n+l = 

V
n 

for a 'plus' move 

for a 'minus' move 

0 To the first approximation, Vn process behaves like 

~ ~ 

Vn+I = 2Vn 

V
n+I = 

Vn

for a 'plus' move 

for a 'minus' move 

o In a long sequence of moves we will typlically see an almost
equal number of+ and -'s, thus



· •. Pdl'arizaton speed:

o To the first approximation, Vn process behaves like
~ ~ 

Vn+l = 2Vn 

Vn+l = Vn 

for a 'plus' move 

for a 'minus' move 

o In a long sequence of moves we will typlically see an almost
equal number of+ and -'s, thus

@ So we expect Zn to behave roughly like 2-../N_ 

o In going from Vm to Vn we make n - m moves. If Sm ,n of
these are 'plus' moves, then

Vn :S [Vm + (n - m - Sm ,n)]25m

,

n 



• In going from Vm to Vn we make n - m moves. If Sm , n of

these are 'plus' moves, then

V: < [V + (n - m - 5 )]25
m, n < [V: + n - m]25

m, n 

n _ m m ,n _ m 

• In going from Vm to Vn we make n - m moves. If Sm , n of

these are 'plus' moves, then

V < [V: + (n - m - 5 )]25
m, n < [V: + n - m]25

m, n 

n _ m m ,n _ m 

• Note that the bound is useful only when n � m - Vm . So one

cannot show too strong a convergence speed based on this

alone.



• In going from Vm to Vn we make n - m moves. If Sm , n of
these are 'plus' moves, then

Vn S [Vm + (n - m - Sm ,n )]25m
,

n S [Vm + n - m]25m
,

n 

• Note that the bound is useful only when n s m - Vm . · So one
cannot show too strong a convergence speed based on this
alone.

• But using the bound twice by introducing an intermediate
destination k:

• In going from Vm to Vn we make n - m moves. If Sm , n of
these are 'plus' moves, then

Vn S [Vm + (n - m - Sm ,n )]25m

,

n S [Vm + n - m]25m
,

n 

• Note that the bound is useful only when n s m - Vm . So one
cannot show too strong a convergence speed based on this
alone.

• But using the bound twice by introducing an intermediate
destination k:

Vn s [Vk + n - k]25k ,
n 

S [[vm + k- m]25
m, k + n - k]25k , n 



Polprization speed; more forn,plll' 

If Vm were less than -2m, we could take k = 2m, and n = m2 to 
obtain 

V m2 :s; [-m25m ,2m + m2 - 2m]252m,m2 

= [-m2m(l-E) 
+ m2 - 2m]2(m2-m)(l-E)/2 (typically)

= 0( _ 2m2(0.5-E))

Equivalently, 

.., Only thing left to show is that Vm :s; -2m is a typical event 
for the paths where Vn --+ -oo. 



Polarization speed: more formally 

11 Only thing left to show is that Vm :S -2m is a typical event 

for the paths where Vn -----+ -oo. 

0 On such paths, there wiii come a time no so that Vn ::; -11 

for all n?: no. The evolution of Vn then satisfies 

Vn+l :'.S 2Vn :'.S Vn - 11 

Vn+l :'.S Vn + 1 

, ; ' ' 
, 
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Phlarization speed( more formally 

'plus' moves 

'minus' moves 

e Only thing left to show is that Vm ::; -2m is a typical event 

for the paths where Vn -----+ -oo. 

0 On such paths, there will come a time no so that Vn ::; -11 

for all n?: no. The evolution of Vn then satisfies 

Vn+l :'.S 2Vn :'.S Vn - 11 

Vn+l :'.S Vn + 1 

'plus' moves 

'minus' moves 

e Thus from no onwards, Vn is dominated by a random walk 

with average drift -5. 



Pol'arization spe��: lilorefor:mally 

@ Only thing left to show is that Vm ::; -2m is a typical event 
for the paths where Vn ---t -oo. 

o On such paths, there will come a time no so that Vn ::; -11
for all n � no. The evolution of Vn then satisfies

Vn+l ::; 2 Vn ::; Vn - 11

Vn+l::; Vn + 1

'plus' moves 

'minus' moves 

e, Thus from no onwards, Vn is dominated by a random walk 
with average drift -5. 

@ Thus at time m = 2no the typical value of Vm is dominated 
by -5n0 = -2.5m::; -2m, which is what we want (with 
roorn to spare). 

Let V � W denote that V is stochastically degraded with respect 
to W. 

If V � W then v± � w± .

Obvious. 
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Construction corn pf exity 

Given any symmetric channel W, and b > 0 there is a symmetric 

channel V such that 

@ V ::s W 

@ l(W)- l(V)::; J 

@ V has an output alphabet of cardinality ::; 2/ J. 
L 

Moreover, one can efficiently find such a V. f 
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Construction complexity 

" If we take the tree of channels, w+++ 

w++­

w+-+ 

w+--

w-++ 

w
-

+
­

w--+ 



Construction com'plex:ity 

ll> If we take the tree of channels,

@ Replace a channel on a node by
a stochastically degraded
version (E.g., replace w+ by a
V :.:s w+ ) whose mutual
information is differs from the
original by c5, (E.g,
l(W+ ) - /(V) = J)

@ If we take the tree of channels, 

@ Replace a channel on a node by 
a stochastically degraded 
version (E.g., replace w+ by a 
V :.:s w+ ) whose mutual 
information is differs from the 
original by c5, (E.g, 
l(W+ ) - /(V) = J) 

<> Then the average loss of mutual 
information the descendants of 
this node at any level equals c5. 

VH­

VI 

w-++ 

w-+­

w--+ 
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Construction complexity 
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Constru'ction compfexity 

Construction coilij plexlty 

V, 1 

V1 

1t If each of the replacements are as in 

the lemma, their total effect on 
average loss of mutual information on 

the nth level of the tree is ( n + 1 )5 

o If each of the replacements are as in

the lemma, their total effect on
average loss of mutual information on

the nth level of the tree is ( n + 1 )5

.t Choosing 6 = 1/(n + l)n ensures 

that the average loss is at most 1/ n.



Con�tr4ctiort compl�xity 

ll> If each of the replacements are as in
the lemma, their total effect on
average loss of mutual information on
the nth level of the tree is (n + 1)5

o Choosing c5 = 1/(n + l)n ensures
that the average loss is at most 1/ n.

@ In particular the fraction of channels
that suffer a loss more than 1/ -Jn is
less than 1/-Jn.






